Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Yeast ; 41(4): 279-294, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38389243

RESUMEN

Transcription enables the production of RNA from a DNA template. Due to the highly dynamic nature of transcription, live-cell imaging methods play a crucial role in measuring the kinetics of this process. For instance, transcriptional bursts have been visualized using fluorescent phage-coat proteins that associate tightly with messenger RNA (mRNA) stem loops formed on nascent transcripts. To convert the signal emanating from a transcription site into meaningful estimates of transcription dynamics, the influence of various parameters on the measured signal must be evaluated. Here, the effect of gene length on the intensity of the transcription site focus was analyzed. Intuitively, a longer gene can support a larger number of transcribing polymerases, thus leading to an increase in the measured signal. However, measurements of transcription induced by hyper-osmotic stress responsive promoters display independence from gene length. A mathematical model of the stress-induced transcription process suggests that the formation of gene loops that favor the recycling of polymerase from the terminator to the promoter can explain the observed behavior. One experimentally validated prediction from this model is that the amount of mRNA produced from a short gene should be higher than for a long one as the density of active polymerase on the short gene will be increased by polymerase recycling. Our data suggest that this recycling contributes significantly to the expression output from a gene and that polymerase recycling is modulated by the promoter identity and the cellular state.


Asunto(s)
Transcripción Genética , Regiones Promotoras Genéticas , ARN Mensajero/genética
2.
bioRxiv ; 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37503115

RESUMEN

Local Cdc42 GTPase activation promotes polarized exocytosis, resulting in membrane flows that deplete low-mobility membrane-associated proteins from the growth region. To investigate the self-organizing properties of the Cdc42 secretion-polarization system under membrane flow, we developed a reaction-diffusion particle model. The model includes positive feedback activation of Cdc42, hydrolysis by GTPase-activating proteins (GAPs), and flow-induced displacement by exo/endocytosis. Simulations show how polarization relies on flow-induced depletion of low mobility GAPs. To probe the role of Cdc42 mobility in the fission yeast Schizosaccharomyces pombe, we changed its membrane binding properties by replacing its prenylation site with 1, 2 or 3 repeats of the Rit1 C terminal membrane binding domain (ritC), yielding alleles with progressively lower unbinding and diffusion rates. Concordant modelling predictions and experimental observations show that lower Cdc42 mobility results in lower Cdc42 activation level and wider patches. Indeed, while Cdc42-1ritC cells are viable and polarized, Cdc42-2ritC polarize poorly and Cdc42-3ritC is inviable. The model further predicts that GAP depletion increases Cdc42 activity at the expense of loss of polarization. Experiments confirm this prediction, as deletion of Cdc42 GAPs restores viability to Cdc42-3ritC cells. Our combined experimental and modelling studies demonstrate how membrane flows are an integral part of Cdc42-driven pattern formation.

3.
Sci Adv ; 7(38): eabg6718, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34533984

RESUMEN

Cells self-organize using reaction-diffusion and fluid-flow principles. Whether bulk membrane flows contribute to cell patterning has not been established. Here, using mathematical modeling, optogenetics, and synthetic probes, we show that polarized exocytosis causes lateral membrane flows away from regions of membrane insertion. Plasma membrane­associated proteins with sufficiently low diffusion and/or detachment rates couple to the flows and deplete from areas of exocytosis. In rod-shaped fission yeast cells, zones of Cdc42 GTPase activity driving polarized exocytosis are limited by GTPase activating proteins (GAPs). We show that membrane flows pattern the GAP Rga4 distribution and that coupling of a synthetic GAP to membrane flows is sufficient to establish the rod shape. Thus, membrane flows induced by Cdc42-dependent exocytosis form a negative feedback restricting the zone of Cdc42 activity.

4.
Mol Biol Cell ; 32(8): 703-711, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33625871

RESUMEN

The fission yeast cells Schizosaccharomyces pombe divide at constant cell size regulated by environmental stimuli. An important pathway of cell size control involves the membrane-associated DYRK-family kinase Pom1, which forms decreasing concentration gradients from cell poles and inhibits mitotic inducers at midcell. Here, we identify the phosphatase 2C Ptc1 as negative regulator of Pom1. Ptc1 localizes to cell poles in a manner dependent on polarity and cell-wall integrity factors. We show that Ptc1 directly binds Pom1 and can dephosphorylate it in vitro but modulates Pom1 localization indirectly upon growth in low-glucose conditions by influencing microtubule stability. Thus, Ptc1 phosphatase plays both direct and indirect roles in the Pom1 cell size control pathway.


Asunto(s)
Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2C/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Polaridad Celular , Tamaño de la Célula , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Fosforilación , Proteínas Quinasas/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
5.
J Cell Biol ; 219(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32320462

RESUMEN

Sterols are crucial components of biological membranes, which are synthetized in the ER and accumulate in the plasma membrane (PM). Here, by applying a genetically encoded sterol biosensor (D4H), we visualize a sterol flow between PM and endosomes in the fission yeast Schizosaccharomyces pombe. Using time-lapse and correlative light-electron microscopy, we found that inhibition of Arp2/3-dependent F-actin assembly promotes the reversible relocalization of D4H from the PM to internal sterol-rich compartments (STRIC) labeled by synaptobrevin Syb1. Retrograde sterol internalization to STRIC is independent of endocytosis or an intact Golgi, but depends on Ltc1, a LAM/StARkin-family protein localized to ER-PM contact sites. The PM in ltc1Δ cells over-accumulates sterols and upon Arp2/3 inhibition forms extended ER-interacting invaginations, indicating that sterol transfer contributes to PM size homeostasis. Anterograde sterol movement from STRIC is independent of canonical vesicular trafficking but requires Arp2/3, suggesting a novel role for this complex. Thus, transfer routes orthogonal to vesicular trafficking govern the flow of sterols in the cell.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/antagonistas & inhibidores , Antiportadores/metabolismo , Membrana Celular/metabolismo , Endosomas/metabolismo , Schizosaccharomyces/metabolismo , Esteroles/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Antiportadores/genética , Técnicas Biosensibles , Membrana Celular/efectos de los fármacos , Membrana Celular/genética , Endocitosis/efectos de los fármacos , Endocitosis/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Endosomas/efectos de los fármacos , Endosomas/ultraestructura , Genes Reporteros , Aparato de Golgi/metabolismo , Microscopía Electrónica de Transmisión , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Mutación , Proteínas R-SNARE/metabolismo
6.
PLoS Biol ; 18(1): e3000600, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31978045

RESUMEN

Local activity of the small GTPase Cdc42 is critical for cell polarization. Whereas scaffold-mediated positive feedback was proposed to break symmetry of budding yeast cells and produce a single zone of Cdc42 activity, the existence of similar regulation has not been probed in other organisms. Here, we address this problem using rod-shaped cells of fission yeast Schizosaccharomyces pombe, which exhibit zones of active Cdc42-GTP at both cell poles. We implemented the CRY2-CIB1 optogenetic system for acute light-dependent protein recruitment to the plasma membrane, which allowed to directly demonstrate positive feedback. Indeed, optogenetic recruitment of constitutively active Cdc42 leads to co-recruitment of the guanine nucleotide exchange factor (GEF) Scd1 and endogenous Cdc42, in a manner dependent on the scaffold protein Scd2. We show that Scd2 function is dispensable when the positive feedback operates through an engineered interaction between the GEF and a Cdc42 effector, the p21-activated kinase 1 (Pak1). Remarkably, this rewired positive feedback confers viability and allows cells to form 2 zones of active Cdc42 even when otherwise essential Cdc42 activators are lacking. These cells further revealed that the small GTPase Ras1 plays a role in both localizing the GEF Scd1 and promoting its activity, which potentiates the positive feedback. We conclude that scaffold-mediated positive feedback, gated by Ras activity, confers robust polarization for rod-shape formation.


Asunto(s)
Matriz Nuclear/fisiología , Schizosaccharomyces , Proteína de Unión al GTP cdc42/metabolismo , Proteínas ras/fisiología , Polaridad Celular/genética , Retroalimentación Fisiológica/fisiología , Optogenética , Organismos Modificados Genéticamente , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteína de Unión al GTP cdc42/genética
7.
PLoS Comput Biol ; 14(7): e1006317, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30028833

RESUMEN

In mating fission yeast cells, sensing and response to extracellular pheromone concentrations occurs through an exploratory Cdc42 patch that stochastically samples the cell cortex before stabilizing towards a mating partner. Active Ras1 (Ras1-GTP), an upstream regulator of Cdc42, and Gap1, the GTPase-activating protein for Ras1, localize at the patch. We developed a reaction-diffusion model of Ras1 patch appearance and disappearance with a positive feedback by a Guanine nucleotide Exchange Factor (GEF) and Gap1 inhibition. The model is based on new estimates of Ras1-GDP, Ras1-GTP and Gap1 diffusion coefficients and rates of cytoplasmic exchange studied by FRAP. The model reproduces exploratory patch behavior and lack of Ras1 patch in cells lacking Gap1. Transition to a stable patch can occur by change of Gap1 rates constants or local increase of the positive feedback rate constants. The model predicts that the patch size and number of patches depend on the strength of positive and negative feedbacks. Measurements of Ras1 patch size and number in cells overexpressing the Ras1 GEF or Gap1 are consistent with the model.


Asunto(s)
Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Proteínas ras/metabolismo , Actinas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Modelos Biológicos , Feromonas/metabolismo , Unión Proteica , Reproducción , Schizosaccharomyces/enzimología , Schizosaccharomyces/metabolismo , Transducción de Señal , Procesos Estocásticos , Proteína de Unión al GTP cdc42/metabolismo
8.
J Cell Biol ; 217(4): 1467-1483, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29453312

RESUMEN

In the fission yeast Schizosaccharomyces pombe, pheromone signaling engages a signaling pathway composed of a G protein-coupled receptor, Ras, and a mitogen-activated protein kinase (MAPK) cascade that triggers sexual differentiation and gamete fusion. Cell-cell fusion requires local cell wall digestion, which relies on an initially dynamic actin fusion focus that becomes stabilized upon local enrichment of the signaling cascade on the structure. We constructed a live-reporter of active Ras1 (Ras1-guanosine triphosphate [GTP]) that shows Ras activity at polarity sites peaking on the fusion structure before fusion. Remarkably, constitutive Ras1 activation promoted fusion focus stabilization and fusion attempts irrespective of cell pairing, leading to cell lysis. Ras1 activity was restricted by the guanosine triphosphatase-activating protein Gap1, which was itself recruited to sites of Ras1-GTP and was essential to block untimely fusion attempts. We propose that negative feedback control of Ras activity restrains the MAPK signal and couples fusion with cell-cell engagement.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Proteínas ras/metabolismo , Polaridad Celular , Activación Enzimática , Retroalimentación Fisiológica , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Cinética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Transducción de Señal , Proteínas ras/genética
9.
PLoS Genet ; 13(4): e1006721, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28410370

RESUMEN

In non-motile fungi, sexual reproduction relies on strong morphogenetic changes in response to pheromone signaling. We report here on a systematic screen for morphological abnormalities of the mating process in fission yeast Schizosaccharomyces pombe. We derived a homothallic (self-fertile) collection of viable deletions, which, upon visual screening, revealed a plethora of phenotypes affecting all stages of the mating process, including cell polarization, cell fusion and sporulation. Cell fusion relies on the formation of the fusion focus, an aster-like F-actin structure that is marked by strong local accumulation of the myosin V Myo52, which concentrates secretion at the fusion site. A secondary screen for fusion-defective mutants identified the myosin V Myo51-associated coiled-coil proteins Rng8 and Rng9 as critical for the coalescence of the fusion focus. Indeed, rng8Δ and rng9Δ mutant cells exhibit multiple stable dots at the cell-cell contact site, instead of the single focus observed in wildtype. Rng8 and Rng9 accumulate on the fusion focus, dependent on Myo51 and tropomyosin Cdc8. A tropomyosin mutant allele, which compromises Rng8/9 localization but not actin binding, similarly leads to multiple stable dots instead of a single focus. By contrast, myo51 deletion does not strongly affect fusion focus coalescence. We propose that focusing of the actin filaments in the fusion aster primarily relies on Rng8/9-dependent cross-linking of tropomyosin-actin filaments.


Asunto(s)
Proteínas de Ciclo Celular/genética , Miosina Tipo V/genética , Miosinas/genética , Proteínas de Schizosaccharomyces pombe/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Secuencia de Aminoácidos/genética , Citoesqueleto/genética , Citoesqueleto/metabolismo , Miosina Tipo V/metabolismo , Fenotipo , Unión Proteica , Reproducción/genética , Schizosaccharomyces/genética , Eliminación de Secuencia
10.
Curr Biol ; 26(8): 1117-25, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27020743

RESUMEN

Cell pairing is central for many processes, including immune defense, neuronal connection, hyphal fusion, and sexual reproduction. How does a cell orient toward a partner, especially when faced with multiple choices? Fission yeast Schizosaccharomyces pombe P and M cells, which respectively express P and M factor pheromones [1, 2], pair during the mating process induced by nitrogen starvation. Engagement of pheromone receptors Map3 and Mam2 [3, 4] with their cognate pheromone ligands leads to activation of the Gα protein Gpa1 to signal sexual differentiation [3, 5, 6]. Prior to cell pairing, the Cdc42 GTPase, a central regulator of cell polarization, forms dynamic zones of activity at the cell periphery at distinct locations over time [7]. Here we show that Cdc42-GTP polarization sites contain the M factor transporter Mam1, the general secretion machinery, which underlies P factor secretion, and Gpa1, suggesting that these are sub-cellular zones of pheromone secretion and signaling. Zone lifetimes scale with pheromone concentration. Computational simulations of pair formation through a fluctuating zone show that the combination of local pheromone release and sensing, short pheromone decay length, and pheromone-dependent zone stabilization leads to efficient pair formation. Consistently, pairing efficiency is reduced in the absence of the P factor protease. Similarly, zone stabilization at reduced pheromone levels, which occurs in the absence of the predicted GTPase-activating protein for Ras, leads to reduction in pairing efficiency. We propose that efficient cell pairing relies on fluctuating local signal emission and perception, which become locked into place through stimulation.


Asunto(s)
Feromonas/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/citología , Transportadoras de Casetes de Unión a ATP/metabolismo , Fusión Celular , Polaridad Celular , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal , Proteína de Unión al GTP cdc42/metabolismo
11.
PLoS Biol ; 13(4): e1002097, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25837586

RESUMEN

The small Rho-family GTPase Cdc42 is critical for cell polarization and polarizes spontaneously in absence of upstream spatial cues. Spontaneous polarization is thought to require dynamic Cdc42 recycling through Guanine nucleotide Dissociation Inhibitor (GDI)-mediated membrane extraction and vesicle trafficking. Here, we describe a functional fluorescent Cdc42 allele in fission yeast, which demonstrates Cdc42 dynamics and polarization independent of these pathways. Furthermore, an engineered Cdc42 allele targeted to the membrane independently of these recycling pathways by an amphipathic helix is viable and polarizes spontaneously to multiple sites in fission and budding yeasts. We show that Cdc42 is highly mobile at the membrane and accumulates at sites of activity, where it displays slower mobility. By contrast, a near-immobile transmembrane domain-containing Cdc42 allele supports viability and polarized activity, but does not accumulate at sites of activity. We propose that Cdc42 activation, enhanced by positive feedback, leads to its local accumulation by capture of fast-diffusing inactive molecules.


Asunto(s)
Actinas/metabolismo , Polaridad Celular , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Schizosaccharomyces/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Alelos , Colorantes Fluorescentes , Transporte de Proteínas , Schizosaccharomyces/citología , Proteína de Unión al GTP cdc42/genética
12.
PLoS One ; 7(6): e40248, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22768263

RESUMEN

The exocyst complex is essential for many exocytic events, by tethering vesicles at the plasma membrane for fusion. In fission yeast, polarized exocytosis for growth relies on the combined action of the exocyst at cell poles and myosin-driven transport along actin cables. We report here the identification of fission yeast Schizosaccharomyces pombe Sec3 protein, which we identified through sequence homology of its PH-like domain. Like other exocyst subunits, sec3 is required for secretion and cell division. Cells deleted for sec3 are only conditionally lethal and can proliferate when osmotically stabilized. Sec3 is redundant with Exo70 for viability and for the localization of other exocyst subunits, suggesting these components act as exocyst tethers at the plasma membrane. Consistently, Sec3 localizes to zones of growth independently of other exocyst subunits but depends on PIP(2) and functional Cdc42. FRAP analysis shows that Sec3, like all other exocyst subunits, localizes to cell poles largely independently of the actin cytoskeleton. However, we show that Sec3, Exo70 and Sec5 are transported by the myosin V Myo52 along actin cables. These data suggest that the exocyst holocomplex, including Sec3 and Exo70, is present on exocytic vesicles, which can reach cell poles by either myosin-driven transport or random walk.


Asunto(s)
Actinas/metabolismo , Polaridad Celular , Complejos Multiproteicos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Modelos Biológicos , Datos de Secuencia Molecular , Miosinas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transporte de Proteínas , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Transporte Vesicular/química , Proteína de Unión al GTP cdc42/metabolismo
13.
Cell ; 145(7): 1116-28, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21703453

RESUMEN

Concentration gradients regulate many cell biological and developmental processes. In rod-shaped fission yeast cells, polar cortical gradients of the DYRK family kinase Pom1 couple cell length with mitotic commitment by inhibiting a mitotic inducer positioned at midcell. However, how Pom1 gradients are established is unknown. Here, we show that Tea4, which is normally deposited at cell tips by microtubules, is both necessary and, upon ectopic cortical localization, sufficient to recruit Pom1 to the cell cortex. Pom1 then moves laterally at the plasma membrane, which it binds through a basic region exhibiting direct lipid interaction. Pom1 autophosphorylates in this region to lower lipid affinity and promote membrane release. Tea4 triggers Pom1 plasma membrane association by promoting its dephosphorylation through the protein phosphatase 1 Dis2. We propose that local dephosphorylation induces Pom1 membrane association and nucleates a gradient shaped by the opposing actions of lateral diffusion and autophosphorylation-dependent membrane detachment.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Quinasas/metabolismo , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Ciclo Celular , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , Fosforilación , Proteínas Quinasas/química , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia
14.
Plant Cell ; 22(7): 2237-52, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20647347

RESUMEN

Plants strictly regulate the uptake and distribution of Zn, which is essential for plant growth and development. Here, we show that Arabidopsis thaliana PCR2 is essential for Zn redistribution and Zn detoxification. The pcr2 loss-of-function mutant was compromised in growth, both in Zn-excessive and -deficient conditions. The roots of pcr2 accumulated more Zn than did control plants, whereas the roots of plants overexpressing PCR2 contained less Zn, indicating that PCR2 removes Zn from the roots. Consistent with a role for PCR2 as a Zn-efflux transporter, PCR2 reduced the intracellular concentration of Zn when expressed in yeast cells. PCR2 is located mainly in epidermal cells and in the xylem of young roots, while it is expressed in epidermal cells in fully developed roots. Zn accumulated in the epidermis of the roots of pcr2 grown under Zn-limiting conditions, whereas it was found in the stele of wild-type roots. The transport pathway mediated by PCR2 does not seem to overlap with that mediated by the described Zn translocators (HMA2 and HMA4) since the growth of pcr2 hma4 double and pcr2 hma2 hma4 triple loss-of-function mutants was more severely inhibited than the individual single knockout mutants, both under conditions of excess or deficient Zn. We propose that PCR2 functions as a Zn transporter essential for maintaining an optimal Zn level in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Zinc/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
J Biol Chem ; 285(30): 23309-17, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20472555

RESUMEN

Plant development and physiology are widely determined by the polar transport of the signaling molecule auxin. This process is controlled on the cellular efflux level catalyzed by members of the PIN (pin-formed) and ABCB (ATP-binding cassette protein subfamily B)/P-glycoprotein family that can function independently and coordinately. In this study, we have identified by means of chemical genomics a novel auxin transport inhibitor (ATI), BUM (2-[4-(diethylamino)-2-hydroxybenzoyl]benzoic acid), that efficiently blocks auxin-regulated plant physiology and development. In many respects, BUM resembles the functionality of the diagnostic ATI, 1-N-naphtylphtalamic acid (NPA), but it has an IC(50) value that is roughly a factor 30 lower. Physiological analysis and binding assays identified ABCBs, primarily ABCB1, as key targets of BUM and NPA, whereas PIN proteins are apparently not directly affected. BUM is complementary to NPA by having distinct ABCB target spectra and impacts on basipetal polar auxin transport in the shoot and root. In comparison with the recently identified ATI, gravacin, it lacks interference with ABCB membrane trafficking. Individual modes or targets of action compared with NPA are reflected by apically shifted root influx maxima that might be the result of altered BUM binding preferences or affinities to the ABCB nucleotide binding folds. This qualifies BUM as a valuable tool for auxin research, allowing differentiation between ABCB- and PIN-mediated efflux systems. Besides its obvious application as a powerful weed herbicide, BUM is a bona fide human ABCB inhibitor with the potential to restrict multidrug resistance during chemotherapy.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Genómica , Ácidos Indolacéticos/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácido Benzoico/química , Ácido Benzoico/metabolismo , Ácido Benzoico/farmacología , Transporte Biológico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Modelos Moleculares , Conformación Proteica , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Especificidad por Sustrato
16.
J Biol Chem ; 283(45): 31218-26, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-18718912

RESUMEN

The rate, polarity, and symmetry of the flow of the plant hormone auxin are determined by the polar cellular localization of PIN-FORMED (PIN) auxin efflux carriers. Flavonoids, a class of secondary plant metabolites, have been suspected to modulate auxin transport and tropic responses. Nevertheless, the identity of specific flavonoid compounds involved and their molecular function and targets in vivo are essentially unknown. Here we show that the root elongation zone of agravitropic pin2/eir1/wav6/agr1 has an altered pattern and amount of flavonol glycosides. Application of nanomolar concentrations of flavonols to pin2 roots is sufficient to partially restore root gravitropism. By employing a quantitative cell biological approach, we demonstrate that flavonoids partially restore the formation of lateral auxin gradients in the absence of PIN2. Chemical complementation by flavonoids correlates with an asymmetric distribution of the PIN1 protein. pin2 complementation probably does not result from inhibition of auxin efflux, as supply of the auxin transport inhibitor N-1-naphthylphthalamic acid failed to restore pin2 gravitropism. We propose that flavonoids promote asymmetric PIN shifts during gravity stimulation, thus redirecting basipetal auxin streams necessary for root bending.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Flavonoides/metabolismo , Gravitropismo/fisiología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Flavonoides/genética , Gravitropismo/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ftalimidas/farmacología , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
17.
J Biol Chem ; 283(31): 21817-26, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18499676

RESUMEN

The immunophilin-like FKBP42 TWISTED DWARF1 (TWD1) has been shown to control plant development via the positive modulation of ABCB/P-glycoprotein (PGP)-mediated transport of the plant hormone auxin. TWD1 functionally interacts with two closely related proteins, ABCB1/PGP1 and ABCB19/PGP19/MDR1, both of which exhibit the ability to bind to and be inhibited by the synthetic auxin transport inhibitor N-1-naphylphtalamic acid (NPA). They are also inhibited by flavonoid compounds, which are suspected modulators of auxin transport. The mechanisms by which flavonoids and NPA interfere with auxin efflux components are unclear. We report here the specific disruption of PGP1-TWD1 interaction by NPA and flavonoids using bioluminescence resonance energy transfer with flavonoids functioning as a classical established inhibitor of mammalian and plant PGPs. Accordingly, TWD1 was shown to mediate modulation of PGP1 efflux activity by these auxin transport inhibitors. NPA bound to both PGP1 and TWD1 but was excluded from the PGP1-TWD1 complex expressed in yeast, suggesting a transient mode of action in planta. As a consequence, auxin fluxes and gravitropism in twd1 roots are less affected by NPA treatment, whereas TWD1 gain-of-function promotes root bending. Our data support a novel model for the mode of drug-mediated P-glycoprotein regulation mediated via protein-protein interaction with immunophilin-like TWD1.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/química , Arabidopsis/metabolismo , Inmunofilinas/química , Ácidos Indolacéticos/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/química , Proteínas de Arabidopsis/química , Transporte Biológico , Membrana Celular/metabolismo , Flavonoides/química , Homocigoto , Luminiscencia , Modelos Biológicos , Raíces de Plantas/metabolismo , Unión Proteica , Proteínas de Unión a Tacrolimus/química
18.
J Biol Chem ; 281(41): 30603-12, 2006 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-16887800

RESUMEN

The immunophilin-like protein TWISTED DWARF1 (TWD1/FKBP42) has been shown to physically interact with the multidrug resistance/P-glycoprotein (PGP) ATP-binding cassette transporters PGP1 and PGP19 (MDR1). Overlapping phenotypes of pgp1/pgp19 and twd1 mutant plants suggested a positive regulatory role of TWD1 in PGP-mediated export of the plant hormone auxin, which controls plant development. Here, we provide evidence at the cellular and plant levels that TWD1 controls PGP-mediated auxin transport. twd1 and pgp1/pgp19 cells showed greatly reduced export of the native auxin indole-3-acetic acid (IAA). Constitutive overexpression of PGP1 and PGP19, but not TWD1, enhanced auxin export. Coexpression of TWD1 and PGP1 in yeast and mammalian cells verified the specificity of the regulatory effect. Employing an IAA-specific microelectrode demonstrated that IAA influx in the root elongation zone was perturbed and apically shifted in pgp1/pgp19 and twd1 roots. Mature roots of pgp1/pgp19 and twd1 plants revealed elevated levels of free IAA, which seemed to account for agravitropic root behavior. Our data suggest a novel mode of PGP regulation via FK506-binding protein-like immunophilins, implicating possible alternative strategies to overcome multidrug resistance.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/química , Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión a Tacrolimus/fisiología , Proteínas Fúngicas/química , Células HeLa , Humanos , Inmunofilinas/química , Ácidos Indolacéticos/química , Modelos Biológicos , Mutación , Raíces de Plantas/metabolismo , Unión Proteica , Proteínas de Unión a Tacrolimus/química
19.
Plant J ; 44(2): 179-94, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16212599

RESUMEN

Directional transport of the phytohormone auxin is required for the establishment and maintenance of plant polarity, but the underlying molecular mechanisms have not been fully elucidated. Plant homologs of human multiple drug resistance/P-glycoproteins (MDR/PGPs) have been implicated in auxin transport, as defects in MDR1 (AtPGP19) and AtPGP1 result in reductions of growth and auxin transport in Arabidopsis (atpgp1, atpgp19), maize (brachytic2) and sorghum (dwarf3). Here we examine the localization, activity, substrate specificity and inhibitor sensitivity of AtPGP1. AtPGP1 exhibits non-polar plasma membrane localization at the shoot and root apices, as well as polar localization above the root apex. Protoplasts from Arabidopsis pgp1 leaf mesophyll cells exhibit reduced efflux of natural and synthetic auxins with reduced sensitivity to auxin efflux inhibitors. Expression of AtPGP1 in yeast and in the standard mammalian expression system used to analyze human MDR-type proteins results in enhanced efflux of indole-3-acetic acid (IAA) and the synthetic auxin 1-naphthalene acetic acid (1-NAA), but not the inactive auxin 2-NAA. AtPGP1-mediated efflux is sensitive to auxin efflux and ABC transporter inhibitors. As is seen in planta, AtPGP1 also appears to mediate some efflux of IAA oxidative breakdown products associated with apical sites of high auxin accumulation. However, unlike what is seen in planta, some additional transport of the benzoic acid is observed in yeast and mammalian cells expressing AtPGP1, suggesting that other factors present in plant tissues confer enhanced auxin specificity to PGP-mediated transport.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transporte Biológico Activo , Regulación de la Expresión Génica de las Plantas/fisiología , Células HeLa , Humanos , Mutación , Ácidos Naftalenoacéticos/metabolismo , Fenotipo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Saccharomyces cerevisiae , Especificidad por Sustrato
20.
FEBS Lett ; 579(24): 5399-5406, 2005 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-16198350

RESUMEN

Previous data have suggested an involvement of MDR/PGP-like ABC transporters in transport of the plant hormone auxin and, recently, AtPGP1 has been demonstrated to catalyze the primary active export of auxin. Here we show that related isoform AtPGP4 is expressed predominantly during early root development. AtPGP4 loss-of-function plants reveal enhanced lateral root initiation and root hair lengths both known to be under the control of auxin. Further, atpgp4 plants show altered sensitivities toward auxin and the auxin transport inhibitor, NPA. Finally, mutant roots reveal elevated free auxin levels and reduced auxin transport capacities. These results together with yeast growth assays suggest a direct involvement of AtPGP4 in auxin transport processes controlling lateral root and root hair development.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/fisiología , Raíces de Plantas/fisiología , Secuencia de Bases , Cartilla de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA