Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 72018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29620525

RESUMEN

Rhythmic theta frequency (~5-12 Hz) oscillations coordinate neuronal synchrony and higher frequency oscillations across the cortex. Spatial navigation and context-dependent episodic memories are represented in several interconnected regions including the hippocampal and entorhinal cortices, but the cellular mechanisms for their dynamic coupling remain to be defined. Using monosynaptically-restricted retrograde viral tracing in mice, we identified a subcortical GABAergic input from the medial septum that terminated in the entorhinal cortex, with collaterals innervating the dorsal presubiculum. Extracellularly recording and labeling GABAergic entorhinal-projecting neurons in awake behaving mice show that these subcortical neurons, named orchid cells, fire in long rhythmic bursts during immobility and locomotion. Orchid cells discharge near the peak of hippocampal and entorhinal theta oscillations, couple to entorhinal gamma oscillations, and target subpopulations of extra-hippocampal GABAergic interneurons. Thus, orchid cells are a specialized source of rhythmic subcortical GABAergic modulation of 'upstream' and 'downstream' cortico-cortical circuits involved in mnemonic functions.


Asunto(s)
Ritmo beta/fisiología , Corteza Entorrinal/fisiología , Neuronas GABAérgicas/fisiología , Hipocampo/fisiología , Vías Nerviosas/fisiología , Giro Parahipocampal/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
2.
Neuron ; 96(6): 1342-1357.e5, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-29198757

RESUMEN

Rhythmic medial septal (MS) GABAergic input coordinates cortical theta oscillations. However, the rules of innervation of cortical cells and regions by diverse septal neurons are unknown. We report a specialized population of septal GABAergic neurons, the Teevra cells, selectively innervating the hippocampal CA3 area bypassing CA1, CA2, and the dentate gyrus. Parvalbumin-immunopositive Teevra cells show the highest rhythmicity among MS neurons and fire with short burst duration (median, 38 ms) preferentially at the trough of both CA1 theta and slow irregular oscillations, coincident with highest hippocampal excitability. Teevra cells synaptically target GABAergic axo-axonic and some CCK interneurons in restricted septo-temporal CA3 segments. The rhythmicity of their firing decreases from septal to temporal termination of individual axons. We hypothesize that Teevra neurons coordinate oscillatory activity across the septo-temporal axis, phasing the firing of specific CA3 interneurons, thereby contributing to the selection of pyramidal cell assemblies at the theta trough via disinhibition. VIDEO ABSTRACT.


Asunto(s)
Región CA3 Hipocampal/citología , Movimiento Celular/fisiología , Neuronas GABAérgicas/fisiología , Red Nerviosa/fisiología , Tabique del Cerebro/citología , Sinapsis/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biotina/análogos & derivados , Biotina/metabolismo , Movimiento Celular/genética , Correlación de Datos , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/ultraestructura , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Parvalbúminas/metabolismo , Sinapsis/efectos de los fármacos , Ritmo Teta/efectos de los fármacos , Ritmo Teta/fisiología
3.
Nat Neurosci ; 15(9): 1265-71, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22864613

RESUMEN

A large variety of GABAergic interneurons control information processing in the hippocampal circuits governing the formation of neuronal representations. Whether distinct hippocampal interneuron types contribute differentially to information processing during behavior is not known. We employed a new technique for recording and labeling interneurons and pyramidal cells in drug-free, freely moving rats. Recorded parvalbumin-expressing basket interneurons innervated somata and proximal pyramidal cell dendrites, whereas nitric oxide synthase- and neuropeptide Y-expressing ivy cells provided synaptic and extrasynaptic dendritic modulation. Basket and ivy cells showed distinct spike-timing dynamics, firing at different rates and times during theta and ripple oscillations. Basket, but not ivy, cells changed their firing rates during movement, sleep and quiet wakefulness, suggesting that basket cells coordinate cell assemblies in a behavioral state-contingent manner, whereas persistently firing ivy cells might control network excitability and homeostasis. Different interneuron types provide GABA to specific subcellular domains at defined times and rates, thereby differentially controlling network activity during behavior.


Asunto(s)
Conducta Animal/fisiología , Hipocampo/fisiología , Interneuronas/fisiología , Análisis de Varianza , Animales , Axones/fisiología , Dendritas/fisiología , Estimulación Eléctrica , Electrodos Implantados , Electroencefalografía , Fenómenos Electrofisiológicos , Potenciales Evocados/fisiología , Hipocampo/citología , Inmunohistoquímica , Microscopía Electrónica , Red Nerviosa/citología , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Parvalbúminas/metabolismo , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley
4.
Science ; 329(5990): 413-7, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20576849

RESUMEN

Retinitis pigmentosa refers to a diverse group of hereditary diseases that lead to incurable blindness, affecting two million people worldwide. As a common pathology, rod photoreceptors die early, whereas light-insensitive, morphologically altered cone photoreceptors persist longer. It is unknown if these cones are accessible for therapeutic intervention. Here, we show that expression of archaebacterial halorhodopsin in light-insensitive cones can substitute for the native phototransduction cascade and restore light sensitivity in mouse models of retinitis pigmentosa. Resensitized photoreceptors activate all retinal cone pathways, drive sophisticated retinal circuit functions (including directional selectivity), activate cortical circuits, and mediate visually guided behaviors. Using human ex vivo retinas, we show that halorhodopsin can reactivate light-insensitive human photoreceptors. Finally, we identified blind patients with persisting, light-insensitive cones for potential halorhodopsin-based therapy.


Asunto(s)
Terapia Genética , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Células Fotorreceptoras Retinianas Conos/fisiología , Retinitis Pigmentosa/terapia , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Potenciales Evocados Visuales , Vectores Genéticos , Halobacteriaceae/genética , Humanos , Luz , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , Retina/fisiología , Células Ganglionares de la Retina/fisiología , Retinitis Pigmentosa/fisiopatología , Técnicas de Cultivo de Tejidos , Transfección , Visión Ocular , Vías Visuales/fisiología
5.
Nat Neurosci ; 12(10): 1308-16, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19734895

RESUMEN

The detection of approaching objects, such as looming predators, is necessary for survival. Which neurons and circuits mediate this function? We combined genetic labeling of cell types, two-photon microscopy, electrophysiology and theoretical modeling to address this question. We identify an approach-sensitive ganglion cell type in the mouse retina, resolve elements of its afferent neural circuit, and describe how these confer approach sensitivity on the ganglion cell. The circuit's essential building block is a rapid inhibitory pathway: it selectively suppresses responses to non-approaching objects. This rapid inhibitory pathway, which includes AII amacrine cells connected to bipolar cells through electrical synapses, was previously described in the context of night-time vision. In the daytime conditions of our experiments, the same pathway conveys signals in the reverse direction. The dual use of a neural pathway in different physiological conditions illustrates the efficiency with which several functions can be accommodated in a single circuit.


Asunto(s)
Red Nerviosa/fisiología , Neuronas/clasificación , Neuronas/fisiología , Retina/citología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Simulación por Computador , Conexinas/deficiencia , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos , Modelos Neurológicos , Percepción de Movimiento/fisiología , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural/genética , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Estimulación Luminosa , Piperazinas/farmacología , Quinoxalinas/farmacología , Campos Visuales/genética , Campos Visuales/fisiología , Vías Visuales/fisiología , Proteína delta-6 de Union Comunicante
6.
Nat Methods ; 6(2): 127-30, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19122667

RESUMEN

We developed retrograde, transsynaptic pseudorabies viruses (PRVs) with genetically encoded activity sensors that optically report the activity of connected neurons among spatially intermingled neurons in the brain. Next we engineered PRVs to express two differentially colored fluorescent proteins in a time-shifted manner to define a time period early after infection to investigate neural activity. Finally we used multiple-colored PRVs to differentiate and dissect the complex architecture of brain regions.


Asunto(s)
Proteínas Fluorescentes Verdes/análisis , Herpesvirus Suido 1/metabolismo , Proteínas Luminiscentes/análisis , Transmisión Sináptica/fisiología , Vías Visuales/virología , Animales , Técnicas Biosensibles/métodos , Encéfalo/citología , Encéfalo/fisiología , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Herpesvirus Suido 1/genética , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Ratones , Neuronas/fisiología , Neuronas/virología , Factores de Tiempo , Vías Visuales/fisiología , Proteína Fluorescente Roja
7.
Curr Biol ; 17(11): 981-8, 2007 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-17524644

RESUMEN

Intrinsically photosensitive melanopsin-containing retinal ganglion cells (ipRGCs) control important physiological processes, including the circadian rhythm, the pupillary reflex, and the suppression of locomotor behavior (reviewed in [1]). ipRGCs are also activated by classical photoreceptors, the rods and cones, through local retinal circuits [2, 3]. ipRGCs can be transsynaptically labeled through the pupillary-reflex circuit with the derivatives of the Bartha strain of the alphaherpesvirus pseudorabies virus(PRV) [4, 5] that express GFP [6-12]. Bartha-strain derivatives spread only in the retrograde direction [13]. There is evidence that infected cells function normally for a while during GFP expression [7]. Here we combine transsynaptic PRV labeling, two-photon laser microscopy, and electrophysiological techniques to trace the local circuit of different ipRGC subtypes in the mouse retina and record light-evoked activity from the transsynaptically labeled ganglion cells. First, we show that ipRGCs are connected by monostratified amacrine cells that provide strong inhibition from classical-photoreceptor-driven circuits. Second, we show evidence that dopaminergic interplexiform cells are synaptically connected to ipRGCs. The latter finding provides a circuitry link between light-dark adaptation and ipRGC function.


Asunto(s)
Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/metabolismo , Vías Visuales/fisiología , Células Amacrinas/fisiología , Células Amacrinas/virología , Animales , Proteínas Fluorescentes Verdes/análisis , Herpesvirus Suido 1/genética , Herpesvirus Suido 1/metabolismo , Ratones , Células Ganglionares de la Retina/efectos de la radiación , Células Ganglionares de la Retina/virología , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...