Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37905511

RESUMEN

Metal surgical pins and screws are employed in millions of orthopedic surgical procedures every year worldwide, but their usability is limited in the case of complex, comminuted fractures or in surgeries on smaller bones. Therefore, replacing such implants with a bone adhesive material has long been considered an attractive option. However, synthesizing a biocompatible bone adhesive with a high bond strength that is simple to apply presents many challenges. To rapidly identify candidate polymers for a biocompatible bone adhesive, we employed a high-throughput screening strategy to assess human mesenchymal stromal cell (hMSC) adhesion toward a library of polymers synthesized via thiol-ene click chemistry. We chose thiol-ene click chemistry because multifunctional monomers can be rapidly cured via ultraviolet (UV) light while minimizing residual monomer, and it provides a scalable manufacturing process for candidate polymers identified from a high-throughput screen. This screening methodology identified a copolymer (1-S2-FT01) composed of the monomers 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATATO) and pentaerythritol tetrakis (3-mercaptopropionate) (PETMP), which supported highest hMSC adhesion across a library of 90 polymers. The identified copolymer (1-S2-FT01) exhibited favorable compressive and tensile properties compared to existing commercial bone adhesives and adhered to bone with adhesion strengths similar to commercially available bone glues such as Histoacryl. Furthermore, this cytocompatible polymer supported osteogenic differentiation of hMSCs and could adhere 3D porous polymer scaffolds to the bone tissue, making this polymer an ideal candidate as an alternative bone adhesive with broad utility in orthopedic surgery.

2.
Nat Biomed Eng ; 7(11): 1374-1391, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37365267

RESUMEN

The efficacy of adoptive T-cell therapies largely depends on the generation of T-cell populations that provide rapid effector function and long-term protective immunity. Yet it is becoming clearer that the phenotypes and functions of T cells are inherently linked to their localization in tissues. Here we show that functionally distinct T-cell populations can be generated from T cells that received the same stimulation by altering the viscoelasticity of their surrounding extracellular matrix (ECM). By using a model ECM based on a norbornene-modified collagen type I whose viscoelasticity can be adjusted independently from its bulk stiffness by varying the degree of covalent crosslinking via a bioorthogonal click reaction with tetrazine moieties, we show that ECM viscoelasticity regulates T-cell phenotype and function via the activator-protein-1 signalling pathway, a critical regulator of T-cell activation and fate. Our observations are consistent with the tissue-dependent gene-expression profiles of T cells isolated from mechanically distinct tissues from patients with cancer or fibrosis, and suggest that matrix viscoelasticity could be leveraged when generating T-cell products for therapeutic applications.


Asunto(s)
Matriz Extracelular , Linfocitos T , Humanos , Matriz Extracelular/metabolismo , Colágeno Tipo I/metabolismo , Fibrosis , Transducción de Señal
3.
Nat Mater ; 21(8): 939-950, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35817965

RESUMEN

Myelofibrosis is a progressive bone marrow malignancy associated with monocytosis, and is believed to promote the pathological remodelling of the extracellular matrix. Here we show that the mechanical properties of myelofibrosis, namely the liquid-to-solid properties (viscoelasticity) of the bone marrow, contribute to aberrant differentiation of monocytes. Human monocytes cultured in stiff, elastic hydrogels show proinflammatory polarization and differentiation towards dendritic cells, as opposed to those cultured in a viscoelastic matrix. This mechanically induced cell differentiation is blocked by inhibiting a myeloid-specific isoform of phosphoinositide 3-kinase, PI3K-γ. We further show that murine bone marrow with myelofibrosis has a significantly increased stiffness and unveil a positive correlation between myelofibrosis grading and viscoelasticity. Treatment with a PI3K-γ inhibitor in vivo reduced frequencies of monocyte and dendritic cell populations in murine bone marrow with myelofibrosis. Moreover, transcriptional changes driven by viscoelasticity are consistent with transcriptional profiles of myeloid cells in other human fibrotic diseases. These results demonstrate that a fibrotic bone marrow niche can physically promote a proinflammatory microenvironment.


Asunto(s)
Mielofibrosis Primaria , Animales , Médula Ósea/patología , Diferenciación Celular , Fibrosis , Humanos , Ratones , Monocitos , Fosfatidilinositol 3-Quinasas , Mielofibrosis Primaria/patología
4.
Biomater Sci ; 8(23): 6741-6753, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33136110

RESUMEN

Human mesenchymal stromal cells (hMSCs) hold great promise in the treatment of inflammatory and immune diseases, due to their immunomodulatory capacity. Their therapeutic activity is often assessed measuring levels of expression of immunomodulatory genes such as indoleamine 2,3-dioxygenase 1 (IDO1) and real-time RT-qPCR is most predominantly the method of choice due to its high sensitivity and relative simplicity. Currently, multiple strategies are explored to promote hMSC-mediated immunomodulation, overlooking the effects they pose in the expression of genes commonly used as internal calibrators in real-time RT-qPCR analyses. However, variations in their expression could introduce significant errors in the evaluation of the therapeutic potential of hMSCs. This work investigates, for the first time, how some of these strategies - 3D encapsulation, the mechanical properties of the 3D matrix and inflammatory licensing - influence the expression of common reference genes in hMSCs. Both 3D encapsulation and inflammatory licensing alter significantly the expression of ß-actin (ACTB) and Ubiquitin C (UBC), respectively. Using them as normalization factors leads to an erroneous assessment of IDO1 mRNA levels, therefore resulting in over or underestimation of the therapeutic potential of hMSCs. In contrast, the range of mechanical properties of the matrix encapsulating the cells did not significantly affect the expression of any of the reference genes studied. Moreover, we identify RPS13 and RPL30 as reference genes of choice under these particular experimental conditions. These results demonstrate the vital importance of validating the expression of reference genes to correctly assess the therapeutic potential of hMSCs by real-time RT-qPCR.


Asunto(s)
Perfilación de la Expresión Génica , Células Madre Mesenquimatosas , Reacción en Cadena en Tiempo Real de la Polimerasa , Humanos , Inmunomodulación , ARN Mensajero/genética
5.
Biomaterials ; 257: 120266, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32763614

RESUMEN

Mesenchymal stromal cells (MSCs) hold great therapeutic potential, in part because of their immunomodulatory properties. However, these properties can be transient and depend on multiple factors. Here, we developed a multifunctional hydrogel system to synergistically enhance the immunomodulatory properties of MSCs, using a combination of sustained inflammatory licensing and three-dimensional (3D) encapsulation in hydrogels with tunable mechanical properties. The immunomodulatory extracellular matrix hydrogels (iECM) consist of an interpenetrating network of click functionalized-alginate and fibrillar collagen, in which interferon γ (IFN-γ) loaded heparin-coated beads are incorporated. The 3D microenvironment significantly enhanced the expression of a wide panel of pivotal immunomodulatory genes in bone marrow-derived primary human MSCs (hMSCs), compared to two-dimensional (2D) tissue culture. Moreover, the inclusion of IFN-γ loaded heparin-coated beads prolonged the expression of key regulatory genes upregulated upon licensing, including indoleamine 2,3-dioxygenase 1 (IDO1) and galectin-9 (GAL9). At a protein level, iECM hydrogels enhanced the secretion of the licensing responsive factor Gal-9 by hMSCs. Its presence in hydrogel conditioned media confirmed the correct release and diffusion of the factors secreted by hMSCs from the system. Furthermore, co-culture of iECM-encapsulated hMSCs and activated human T cells resulted in suppressed proliferation, demonstrating direct regulation on immune cells. These data highlight the potential of iECM hydrogels to enhance the immunomodulatory properties of hMSCs in cell therapies.


Asunto(s)
Células Madre Mesenquimatosas , Biomimética , Medios de Cultivo Condicionados , Humanos , Hidrogeles , Inmunomodulación
6.
Acta Biomater ; 110: 153-163, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32417266

RESUMEN

Gene delivery within hydrogel matrices can potentially direct mesenchymal stem cells (MSCs) towards a chondrogenic fate to promote regeneration of cartilage. Here, we investigated whether the mechanical properties of the hydrogel containing the gene delivery systems could enhance transfection and chondrogenic programming of primary human bone marrow-derived MSCs. We developed collagen-I-alginate interpenetrating polymer network hydrogels with tunable stiffness and adhesion properties. The hydrogels were activated with nanocomplexed SOX9 polynucleotides to direct chondrogenic differentiation of MSCs. MSCs transfected within the hydrogels showed higher expression of chondrogenic markers compared to MSCs transfected in 2D prior to encapsulation. The nanocomplex uptake and resulting expression of transfected SOX9 were jointly enhanced by increased stiffness and cell-adhesion ligand density in the hydrogels. Further, transfection of SOX9 effectively induced MSCs chondrogenesis and reduced markers of hypertrophy compared to control matrices. These findings highlight the importance of matrix stiffness and adhesion as design parameters in gene-activated matrices for regenerative medicine. STATEMENT OF SIGNIFICANCE: Gene-activated matrices (GAMs) are biodegradable polymer networks integrating gene therapies, and they are promising technologies for supporting tissue regeneration. Despite this interest, there is still limited information on how to rationally design these systems. Here, we provide a systematic study of the effect of matrix stiffness and cell adhesion ligands on gene transfer efficiency. We show that high stiffness and the presence of cell-binding sites promote transfection efficiency and that this result is related to more efficient internalization and trafficking of the gene therapies. GAMs with optimized mechanical properties can induce cartilage formation and result in tissues with better characteristics for articular cartilage tissue engineering as compared to previously described standard methods.


Asunto(s)
Células Madre Mesenquimatosas , Factor de Transcripción SOX9 , Diferenciación Celular , Condrogénesis/genética , Matriz Extracelular , Humanos , Hidrogeles , Factor de Transcripción SOX9/genética , Transfección
7.
Proc Natl Acad Sci U S A ; 116(31): 15392-15397, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31311862

RESUMEN

Mesenchymal stem cell (MSC) therapies demonstrate particular promise in ameliorating diseases of immune dysregulation but are hampered by short in vivo cell persistence and inconsistencies in phenotype. Here, we demonstrate that biomaterial encapsulation into alginate using a microfluidic device could substantially increase in vivo MSC persistence after intravenous (i.v.) injection. A combination of cell cluster formation and subsequent cross-linking with polylysine led to an increase in injected MSC half-life by more than an order of magnitude. These modifications extended persistence even in the presence of innate and adaptive immunity-mediated clearance. Licensing of encapsulated MSCs with inflammatory cytokine pretransplantation increased expression of immunomodulatory-associated genes, and licensed encapsulates promoted repopulation of recipient blood and bone marrow with allogeneic donor cells after sublethal irradiation by a ∼2-fold increase. The ability of microgel encapsulation to sustain MSC survival and increase overall immunomodulatory capacity may be applicable for improving MSC therapies in general.


Asunto(s)
Encapsulación Celular , Inmunomodulación , Células Madre Mesenquimatosas/citología , Alginatos/química , Animales , Células Cultivadas , Regulación de la Expresión Génica , Hematopoyesis/genética , Inmunidad , Inmunomodulación/genética , Ratones Endogámicos BALB C , Factores de Tiempo , Trasplante Homólogo
8.
Biomaterials ; 188: 187-197, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366219

RESUMEN

Materials that can mimic the fibrillar architecture of native extracellular matrix (ECM) while allowing for independent regulation of viscoelastic properties may serve as ideal, artificial ECM (aECM) to regulate cell functions. Here we describe an interpenetrating network of click-functionalized alginate, crosslinked with a combination of ionic and covalent crosslinking, and fibrillar collagen type I. Varying the mode and magnitude of crosslinking enables tunable stiffness and viscoelasticity, while altering neither the hydrogel's microscale architecture nor diffusional transport of molecules with molecular weight relevant to typical nutrients. Further, appropriately timing sequential ionic and covalent crosslinking permits self-assembly of collagen into fibrillar structures within the network. Culture of human mesenchymal stem cells (MSCs) in this mechanically-tunable ECM system revealed that MSC expression of immunomodulatory markers is differentially impacted by the viscoelasticity and stiffness of the matrix. Together, these results describe and validate a novel material system for investigating how viscoelastic mechanical properties of ECM regulate cellular behavior.


Asunto(s)
Alginatos/química , Materiales Biocompatibles/química , Colágeno Tipo I/química , Reactivos de Enlaces Cruzados/química , Hidrogeles/química , Materiales Biomiméticos/química , Células Cultivadas , Elasticidad , Matriz Extracelular/química , Humanos , Células Madre Mesenquimatosas/citología , Persona de Mediana Edad , Viscosidad
9.
Biofabrication ; 10(3): 035004, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29595143

RESUMEN

The tumor microenvironment (TME) is gaining increasing attention in oncology, as it is recognized to be functionally important during tumor development and progression. Tumors are heterogeneous tissues that, in addition to tumor cells, contain tumor-associated cell types such as immune cells, fibroblasts, and endothelial cells. These other cells, together with the specific extracellular matrix (ECM), create a permissive environment for tumor growth. While the influence of tumor-infiltrating cells and mechanical properties of the ECM in tumor invasion and progression have been studied separately, their interaction within the complex TME and the epithelial -to-mesenchymal transition (EMT) is still unclear. In this work, we develop a 3D co-culture model of lung adenocarcinoma cells and macrophages in an interpenetrating network hydrogel, to investigate the influence of the macrophage phenotype and ECM stiffness in the induction of EMT. Rising ECM stiffness increases both tumor cell proliferation and invasiveness. The presence of tumor-associated macrophages and the ECM stiffness jointly contribute to an invasive phenotype, and modulate the expression of key EMT-related markers. Overall, these findings support the utility of in vitro 3D cancer models that allow one to study interactions among key components of the TME.


Asunto(s)
Adenocarcinoma/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Macrófagos/fisiología , Microambiente Tumoral/fisiología , Línea Celular Tumoral , Técnicas de Cocultivo , Humanos , Macrófagos/citología , Fenómenos Mecánicos
10.
Adv Mater ; 30(4)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29215170

RESUMEN

Dental disease annually affects billions of patients, and while regenerative dentistry aims to heal dental tissue after injury, existing polymeric restorative materials, or fillings, do not directly participate in the healing process in a bioinstructive manner. There is a need for restorative materials that can support native functions of dental pulp stem cells (DPSCs), which are capable of regenerating dentin. A polymer microarray formed from commercially available monomers to rapidly identify materials that support DPSC adhesion is used. Based on these findings, thiol-ene chemistry is employed to achieve rapid light-curing and minimize residual monomer of the lead materials. Several triacrylate bulk polymers support DPSC adhesion, proliferation, and differentiation in vitro, and exhibit stiffness and tensile strength similar to existing dental materials. Conversely, materials composed of a trimethacrylate monomer or bisphenol A glycidyl methacrylate, which is a monomer standard in dental materials, do not support stem cell adhesion and negatively impact matrix and signaling pathways. Furthermore, thiol-ene polymerized triacrylates are used as permanent filling materials at the dentin-pulp interface in direct contact with irreversibly injured pulp tissue. These novel triacrylate-based biomaterials have potential to enable novel regenerative dental therapies in the clinic by both restoring teeth and providing a supportive niche for DPSCs.


Asunto(s)
Células Madre , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Pulpa Dental , Dentina , Humanos , Polímeros
11.
Nat Rev Mol Cell Biol ; 18(12): 728-742, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29115301

RESUMEN

Stem cells and their local microenvironment, or niche, communicate through mechanical cues to regulate cell fate and cell behaviour and to guide developmental processes. During embryonic development, mechanical forces are involved in patterning and organogenesis. The physical environment of pluripotent stem cells regulates their self-renewal and differentiation. Mechanical and physical cues are also important in adult tissues, where adult stem cells require physical interactions with the extracellular matrix to maintain their potency. In vitro, synthetic models of the stem cell niche can be used to precisely control and manipulate the biophysical and biochemical properties of the stem cell microenvironment and to examine how the mode and magnitude of mechanical cues, such as matrix stiffness or applied forces, direct stem cell differentiation and function. Fundamental insights into the mechanobiology of stem cells also inform the design of artificial niches to support stem cells for regenerative therapies.


Asunto(s)
Células Madre Adultas/fisiología , Matriz Extracelular/fisiología , Organogénesis/fisiología , Regeneración/fisiología , Nicho de Células Madre/fisiología , Células Madre Adultas/citología , Animales , Fenómenos Biomecánicos/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...