Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 7(12): 2045-2054, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37884688

RESUMEN

Fossilized lipids offer a rare glimpse into ancient ecosystems. 2-Methylhopanes in sedimentary rocks were once used to infer the importance of cyanobacteria as primary producers throughout geological history. However, the discovery of hopanoid C-2 methyltransferase (HpnP) in Alphaproteobacteria led to the downfall of this molecular proxy. In the present study, we re-examined the distribution of HpnP in a new phylogenetic framework including recently proposed candidate phyla and re-interpreted a revised geological record of 2-methylhopanes based on contamination-free samples. We show that HpnP was probably present in the last common ancestor of cyanobacteria, while the gene appeared in Alphaproteobacteria only around 750 million years ago (Ma). A subsequent rise of sedimentary 2-methylhopanes around 600 Ma probably reflects the expansion of Alphaproteobacteria that coincided with the rise of eukaryotic algae-possibly connected by algal dependency on microbially produced vitamin B12. Our findings re-establish 2-methylhopanes as cyanobacterial biomarkers before 750 Ma and thus as a potential tool to measure the importance of oxygenic cyanobacteria as primary producers on early Earth. Our study illustrates how genetics can improve the diagnostic value of biomarkers and refine the reconstruction of early ecosystems.


Asunto(s)
Cianobacterias , Ecosistema , Filogenia , Cianobacterias/genética , Plantas , Biomarcadores
2.
Geobiology ; 18(5): 544-559, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32216165

RESUMEN

The discovery of mid-Proterozoic (1.8-0.8 billion years ago, Ga) indigenous biomarkers is a challenge, since biologically informative molecules of such antiquity are commonly destroyed by metamorphism or overprinted by drilling fluids and other anthropogenic petroleum products. Previously, the oldest clearly indigenous biomarkers were reported from the 1.64 Ga Barney Creek Formation in the northern Australian McArthur Basin. In this study, we present the discovery of biomarker molecules from carbonaceous shales of the 1.73 Ga Wollogorang Formation in the southern McArthur Basin, extending the biomarker record back in time by ~90 million years. The extracted hydrocarbons illustrate typical mid-Proterozoic signatures with a large unresolved complex mixture, high methyl alkane/n-alkane ratios and the absence of eukaryotic steranes. Acyclic isoprenoids, saturated carotenoid derivatives, bacterial hopanes and aromatic hopanoids and steroids also were below detection limits. However, continuous homologous series of low molecular weight C14 -C19 2,3,4- and 2,3,6-trimethyl aryl isoprenoids (AI) were identified, and C20 -C22 AI homologues were tentatively identified. Based on elevated abundances relative to abiogenic isomers, we interpret the 2,3,6-AI isomer series as biogenic molecules and the 2,3,4-AI series as possibly biogenic. The biological sources for the 2,3,6-AI series include carotenoids of cyanobacteria and/or green sulphur bacteria (Chlorobiaceae). The lower concentrated 2,3,4-AI series may be derived from purple sulphur bacteria (Chromatiaceae). These degradation products of carotenoids are the oldest known clearly indigenous molecules of likely biogenic origin.


Asunto(s)
Chromatiaceae , Australia , Biomarcadores , Sedimentos Geológicos , Hidrocarburos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...