Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr D Struct Biol ; 80(Pt 7): 535-550, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38935342

RESUMEN

The formation of a vitrified thin film embedded with randomly oriented macromolecules is an essential prerequisite for cryogenic sample electron microscopy. Most commonly, this is achieved using the plunge-freeze method first described nearly 40 years ago. Although this is a robust method, the behaviour of different macromolecules shows great variation upon freezing and often needs to be optimized to obtain an isotropic, high-resolution reconstruction. For a macromolecule in such a film, the probability of encountering the air-water interface in the time between blotting and freezing and adopting preferred orientations is very high. 3D reconstruction using preferentially oriented particles often leads to anisotropic and uninterpretable maps. Currently, there are no general solutions to this prevalent issue, but several approaches largely focusing on sample preparation with the use of additives and novel grid modifications have been attempted. In this study, the effect of physical and chemical factors on the orientations of macromolecules was investigated through an analysis of selected well studied macromolecules, and important parameters that determine the behaviour of proteins on cryo-EM grids were revealed. These insights highlight the nature of the interactions that cause preferred orientations and can be utilized to systematically address orientation bias for any given macromolecule and to provide a framework to design small-molecule additives to enhance sample stability and behaviour.


Asunto(s)
Microscopía por Crioelectrón , Humanos , Proteínas/química , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Estructura Terciaria de Proteína , SARS-CoV-2/química , Tensoactivos/química , Estructura Cuaternaria de Proteína , Escherichia coli/química , Temperatura
2.
Nat Commun ; 15(1): 2942, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580658

RESUMEN

Pannexins are single-membrane large-pore channels that release ions and ATP upon activation. Three isoforms of pannexins 1, 2, and 3, perform diverse cellular roles and differ in their pore lining residues. In this study, we report the cryo-EM structure of pannexin 3 at 3.9 Å and analyze its structural differences with pannexin isoforms 1 and 2. The pannexin 3 vestibule has two distinct chambers and a wider pore radius in comparison to pannexins 1 and 2. We further report two cryo-EM structures of pannexin 1, with pore substitutions W74R/R75D that mimic the pore lining residues of pannexin 2 and a germline mutant of pannexin 1, R217H at resolutions of 3.2 Å and 3.9 Å, respectively. Substitution of cationic residues in the vestibule of pannexin 1 results in reduced ATP interaction propensities to the channel. The germline mutant R217H in transmembrane helix 3 (TM3), leads to a partially constricted pore, reduced ATP interaction and weakened voltage sensitivity. The study compares the three pannexin isoform structures, the effects of substitutions of pore and vestibule-lining residues and allosteric effects of a pathological substitution on channel structure and function thereby enhancing our understanding of this vital group of ATP-release channels.


Asunto(s)
Adenosina Trifosfato , Conexinas , Conexinas/química , Microscopía por Crioelectrón , Isoformas de Proteínas/genética
3.
Int J Biochem Cell Biol ; 169: 106536, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38307321

RESUMEN

Deciphering the three-dimensional structures of macromolecules is of paramount importance for gaining insights into their functions and roles in human health and disease. Single particle cryoEM has emerged as a powerful technique that enables direct visualization of macromolecules and their complexes, and through subsequent averaging, achieve near atomic-level resolution. A major breakthrough was recently achieved with the determination of the apoferritin structure at true atomic resolution. In this review, we discuss the latest technological innovations across the entire single-particle workflow, which have been instrumental in driving the resolution revolution and in transforming cryoEM as a mainstream technique in structural biology. We illustrate these advancements using apoferritin as an example that has served as an excellent benchmark sample for assessing emerging technologies. We further explore whether the existing technology can routinely generate atomic structures of dynamic macromolecules that more accurately represent real-world samples, the limitations in the workflow, and the current approaches employed to overcome them.


Asunto(s)
Apoferritinas , Humanos , Microscopía por Crioelectrón/métodos , Sustancias Macromoleculares/química
4.
IUCrJ ; 10(Pt 6): 738-753, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37860976

RESUMEN

Enolase, a ubiquitous enzyme, catalyzes the reversible conversion of 2-phosphoglycerate (2PG) to phosphoenolpyruvate (PEP) in the glycolytic pathway of organisms of all three domains of life. The underlying mechanism of the 2PG to PEP conversion has been studied in great detail in previous work, however that of the reverse reaction remains to be explored. Here we present structural snapshots of Mycobacterium tuberculosis (Mtb) enolase in apo, PEP-bound and two 2PG-bound forms as it catalyzes the conversion of PEP to 2PG. The two 2PG-bound complex structures differed in the conformation of the bound product (2PG) viz the widely reported canonical conformation and a novel binding pose, which we refer to here as the alternate conformation. Notably, we observed two major differences compared with the forward reaction: the presence of MgB is non-obligatory for the reaction and 2PG assumes an alternate conformation that is likely to facilitate its dissociation from the active site. Molecular dynamics studies and binding free energy calculations further substantiate that the alternate conformation of 2PG causes distortions in both metal ion coordination and hydrogen-bonding interactions, resulting in an increased flexibility of the active-site loops and aiding product release. Taken together, this study presents a probable mechanism involved in PEP to 2PG catalysis that is likely to be mediated by the conformational change of 2PG at the active site.


Asunto(s)
Mycobacterium tuberculosis , Fosfopiruvato Hidratasa , Fosfopiruvato Hidratasa/química , Conformación Proteica , Modelos Moleculares , Catálisis
6.
ACS Chem Biol ; 17(4): 829-839, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35316014

RESUMEN

Methylation of specific nucleotides is integral for ribosomal biogenesis and also serves as a common mechanism to confer antibiotic resistance by pathogenic bacteria. Here, by determining the high-resolution structure of the 30S-KsgA complex by cryo-electron microscopy, a state was captured, where KsgA juxtaposes between helices h44 and h45 of the 30S ribosome, separating them, thereby enabling remodeling of the surrounded rRNA and allowing the cognate site to enter the methylation pocket. With the structure as a guide, several mutant versions of the ribosomes, where interacting bases in the catalytic helix h45 and surrounding helices h44, h24, and h27, were mutated and evaluated for their methylation efficiency revealing factors that direct the enzyme to its cognate site with high fidelity. The biochemical studies show that the three-dimensional environment of the ribosome enables the interaction of select loop regions in KsgA with the ribosome helices paramount to maintain selectivity.


Asunto(s)
Metiltransferasas , ARN , Microscopía por Crioelectrón , Escherichia coli/genética , Metiltransferasas/química , ARN/análisis , ARN Ribosómico , ARN Ribosómico 16S/química , Ribosomas/química
7.
Microscopy (Oxf) ; 71(Supplement_1): i51-i59, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35275189

RESUMEN

One of the key goals in single-particle cryo-microscopy is to obtain a uniform distribution of particle orientations, so that the three-dimensional structure has isotropic resolution in Fourier space. A common problem arises from the interaction of protein molecules with the air-water interface that exists on both surfaces of the thin film of liquid that is formed prior to plunge-freezing into liquid ethane. Some proteins and other macromolecular complexes are disrupted by interaction with the air-water interface. Other proteins or macromolecules either become concentrated through their interaction with the interface or are excluded because they bind strongly to some other part of the grid or the filter paper used in blotting. In this paper, the interaction of human erythrocyte catalase with the air-water interface is investigated and minimized by the addition of certain detergents. Detergents can form an amphipathic monolayer at the air-water interface that creates a barrier and leaves the molecules free to adopt a variety of orientations, thus facilitating the 3D structure determination. These results suggest that further characterization and development of detergents for cryo-microscopy plunge-freezing would be useful.


Asunto(s)
Proteínas , Agua , Catalasa , Microscopía por Crioelectrón/métodos , Eritrocitos , Humanos , Agua/química
8.
Elife ; 102021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34622778

RESUMEN

Progenitors of the thoracic tracheal system of adult Drosophila (tracheoblasts) arrest in G2 during larval life and rekindle a mitotic program subsequently. G2 arrest is dependent on ataxia telangiectasia mutated and rad3-related kinase (ATR)-dependent phosphorylation of checkpoint kinase 1 (Chk1) that is actuated in the absence of detectable DNA damage. We are interested in the mechanisms that activate ATR/Chk1 (Kizhedathu et al., 2018; Kizhedathu et al., 2020). Here we report that levels of reactive oxygen species (ROS) are high in arrested tracheoblasts and decrease upon mitotic re-entry. High ROS is dependent on expression of Duox, an H2O2 generating dual oxidase. ROS quenching by overexpression of superoxide dismutase 1, or by knockdown of Duox, abolishes Chk1 phosphorylation and results in precocious proliferation. Tracheae deficient in Duox, or deficient in both Duox and regulators of DNA damage-dependent ATR/Chk1 activation (ATRIP/TOPBP1/claspin), can induce phosphorylation of Chk1 in response to micromolar concentrations of H2O2 in minutes. The findings presented reveal that H2O2 activates ATR/Chk1 in tracheoblasts by a non-canonical, potentially direct, mechanism.


Asunto(s)
Proteínas de Ciclo Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Oxidasas Duales/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Proteínas de Drosophila/metabolismo , Oxidasas Duales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
9.
Cell Rep ; 36(9): 109648, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34469715

RESUMEN

Metabotropic glutamate receptors (mGluRs) are dimeric G-protein-coupled receptors activated by the main excitatory neurotransmitter, L-glutamate. mGluR activation by agonists binding in the venus flytrap domain is regulated by positive (PAM) or negative (NAM) allosteric modulators binding to the 7-transmembrane domain (7TM). We report the cryo-electron microscopy structures of fully inactive and intermediate-active conformations of mGlu5 receptor bound to an antagonist and a NAM or an agonist and a PAM, respectively, as well as the crystal structure of the 7TM bound to a photoswitchable NAM. The agonist induces a large movement between the subunits, bringing the 7TMs together and stabilizing a 7TM conformation structurally similar to the inactive state. Using functional approaches, we demonstrate that the PAM stabilizes a 7TM active conformation independent of the conformational changes induced by agonists, representing an alternative mode of mGlu activation. These findings provide a structural basis for different mGluR activation modes.


Asunto(s)
Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Receptor del Glutamato Metabotropico 5/agonistas , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Microscopía por Crioelectrón , Cristalografía por Rayos X , Agonistas de Aminoácidos Excitadores/metabolismo , Antagonistas de Aminoácidos Excitadores/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Subunidades de Proteína , Receptor del Glutamato Metabotropico 5/metabolismo , Receptor del Glutamato Metabotropico 5/ultraestructura , Relación Estructura-Actividad
11.
Prog Biophys Mol Biol ; 160: 66-78, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32735943

RESUMEN

Dimethylformamidase (DMFase) catalyzes the hydrolysis of dimethylformamide, an industrial solvent, introduced into the environment by humans. Recently, we determined the structures of dimethylformamidase by electron cryo microscopy and X-ray crystallography revealing a tetrameric enzyme with a mononuclear iron at the active site. DMFase from Paracoccus sp. isolated from a waste water treatment plant around the city of Kanpur in India shows maximal activity at 54 °C and is halotolerant. The structures determined by both techniques are mostly identical and the largest difference is in a loop near the active site. This loop could play a role in co-operativity between the monomers. A number of non-protein densities are observed in the EM map, which are modelled as water molecules. Comparison of the structures determined by the two methods reveals conserved water molecules that could play a structural role. The higher stability, unusual active site and negligible activity at low temperature makes this a very good model to study enzyme mechanism by cryoEM.


Asunto(s)
Amidohidrolasas/química , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Amidohidrolasas/metabolismo , Conformación Proteica , Multimerización de Proteína/fisiología , Transducción de Señal , Agua/química
12.
EMBO J ; 39(14): e104006, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32567727

RESUMEN

Cellular studies of filamentous actin (F-actin) processes commonly utilize fluorescent versions of toxins, peptides, and proteins that bind actin. While the choice of these markers has been largely based on availability and ease, there is a severe dearth of structural data for an informed judgment in employing suitable F-actin markers for a particular requirement. Here, we describe the electron cryomicroscopy structures of phalloidin, lifeAct, and utrophin bound to F-actin, providing a comprehensive high-resolution structural comparison of widely used actin markers and their influence towards F-actin. Our results show that phalloidin binding does not induce specific conformational change and lifeAct specifically recognizes closed D-loop conformation, i.e., ADP-Pi or ADP states of F-actin. The structural models aided designing of minimal utrophin and a shorter lifeAct, which can be utilized as F-actin marker. Together, our study provides a structural perspective, where the binding sites of utrophin and lifeAct overlap with majority of actin-binding proteins and thus offering an invaluable resource for researchers in choosing appropriate actin markers and generating new marker variants.


Asunto(s)
Actinas/ultraestructura , Modelos Moleculares , Microscopía por Crioelectrón , Humanos
13.
Angew Chem Int Ed Engl ; 59(39): 16961-16966, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32452120

RESUMEN

N,N-dimethyl formamide (DMF) is an extensively used organic solvent but is also a potent pollutant. Certain bacterial species from genera such as Paracoccus, Pseudomonas, and Alcaligenes have evolved to use DMF as a sole carbon and nitrogen source for growth via degradation by a dimethylformamidase (DMFase). We show that DMFase from Paracoccus sp. strain DMF is a halophilic and thermostable enzyme comprising a multimeric complex of the α2 ß2 or (α2 ß2 )2 type. One of the three domains of the large subunit and the small subunit are hitherto undescribed protein folds of unknown evolutionary origin. The active site consists of a mononuclear iron coordinated by two Tyr side-chain phenolates and one carboxylate from Glu. The Fe3+ ion in the active site catalyzes the hydrolytic cleavage of the amide bond in DMF. Kinetic characterization reveals that the enzyme shows cooperativity between subunits, and mutagenesis and structural data provide clues to the catalytic mechanism.


Asunto(s)
Amidohidrolasas/metabolismo , Dimetilformamida/metabolismo , Paracoccus/enzimología , Tirosina/metabolismo , Amidohidrolasas/química , Dominio Catalítico , Dimetilformamida/química , Estructura Molecular , Tirosina/química
14.
Nat Commun ; 10(1): 4127, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511507

RESUMEN

Substrate channeling is a mechanism for the internal transfer of hydrophobic, unstable or toxic intermediates from the active site of one enzyme to another. Such transfer has previously been described to be mediated by a hydrophobic tunnel, the use of electrostatic highways or pivoting and by conformational changes. The enzyme PaaZ is used by many bacteria to degrade environmental pollutants. PaaZ is a bifunctional enzyme that catalyzes the ring opening of oxepin-CoA and converts it to 3-oxo-5,6-dehydrosuberyl-CoA. Here we report the structures of PaaZ determined by electron cryomicroscopy with and without bound ligands. The structures reveal that three domain-swapped dimers of the enzyme form a trilobed structure. A combination of small-angle X-ray scattering (SAXS), computational studies, mutagenesis and microbial growth experiments suggests that the key intermediate is transferred from one active site to the other by a mechanism of electrostatic pivoting of the CoA moiety, mediated by a set of conserved positively charged residues.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Metaboloma , Fenilacetatos/metabolismo , Sitios de Unión , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Modelos Moleculares , Fenilacetatos/química , Dominios Proteicos , Especificidad por Sustrato
15.
Biophys Rev ; : 513-514, 2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31267327
16.
Nat Commun ; 10(1): 3058, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296862

RESUMEN

The AAA+ GTPase McrB powers DNA cleavage by the endonuclease McrC. The GTPase itself is activated by McrC. The architecture of the GTPase and nuclease complex, and the mechanism of their activation remained unknown. Here, we report a 3.6 Å structure of a GTPase-active and DNA-binding deficient construct of McrBC. Two hexameric rings of McrB are bridged by McrC dimer. McrC interacts asymmetrically with McrB protomers and inserts a stalk into the pore of the ring, reminiscent of the γ subunit complexed to α3ß3 of F1-ATPase. Activation of the GTPase involves conformational changes of residues essential for hydrolysis. Three consecutive nucleotide-binding pockets are occupied by the GTP analogue 5'-guanylyl imidodiphosphate and the next three by GDP, which is suggestive of sequential GTP hydrolysis.


Asunto(s)
Dominio AAA , Enzimas de Restricción del ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Microscopía por Crioelectrón , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/aislamiento & purificación , Enzimas de Restricción del ADN/ultraestructura , ADN Bacteriano/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/ultraestructura , Guanosina Trifosfato/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Relación Estructura-Actividad
17.
Nucleic Acids Res ; 47(2): 868-882, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30521042

RESUMEN

McrBC is one of the three modification-dependent restriction enzymes encoded by the Escherichia coli K12 chromosome. Amongst restriction enzymes, McrBC and its close homologues are unique in employing the AAA+ domain for GTP hydrolysis-dependent activation of DNA cleavage. The GTPase activity of McrB is stimulated by the endonuclease subunit McrC. It had been reported previously that McrB and McrC subunits oligomerise together into a high molecular weight species. Here we conclusively demonstrate using size exclusion chromatography coupled multi-angle light scattering (SEC-MALS) and images obtained by electron cryomicroscopy that McrB exists as a hexamer in solution. Furthermore, based on SEC-MALS and SAXS analyses of McrBC and the structure of McrB, we propose that McrBC is a complex of two McrB hexamers bridged by two subunits of McrC, and that the complete assembly of this complex is integral to its enzymatic activity. We show that the nucleotide-dependent oligomerisation of McrB precedes GTP hydrolysis. Mutational studies show that, unlike other AAA+ proteins, the catalytic Walker B aspartate is required for oligomerisation.


Asunto(s)
Enzimas de Restricción del ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , GTP Fosfohidrolasas/metabolismo , Microscopía por Crioelectrón , Enzimas de Restricción del ADN/genética , Enzimas de Restricción del ADN/ultraestructura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestructura , Guanosina Trifosfato/metabolismo , Mutación , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
18.
Structure ; 26(2): 312-319.e3, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29395787

RESUMEN

Complex I (NADH:ubiquinone oxidoreductase) is central to energy metabolism in mammalian mitochondria. It couples NADH oxidation by ubiquinone to proton transport across the energy-conserving inner membrane, catalyzing respiration and driving ATP synthesis. In the absence of substrates, active complex I gradually enters a pronounced resting or deactive state. The active-deactive transition occurs during ischemia and is crucial for controlling how respiration recovers upon reperfusion. Here, we set a highly active preparation of Bos taurus complex I into the biochemically defined deactive state, and used single-particle electron cryomicroscopy to determine its structure to 4.1 Å resolution. We show that the deactive state arises when critical structural elements that form the ubiquinone-binding site become disordered, and we propose reactivation is induced when substrate binding to the NADH-reduced enzyme templates their reordering. Our structure both rationalizes biochemical data on the deactive state and offers new insights into its physiological and cellular roles.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/metabolismo , Modelos Moleculares , Animales , Bovinos , Microscopía por Crioelectrón , Oxidación-Reducción , Ubiquinona/metabolismo
19.
Nat Commun ; 8(1): 2073, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29233991

RESUMEN

ß-barrel proteins mediate nutrient uptake in bacteria and serve vital functions in cell signaling and adhesion. For the 14-strand outer membrane protein G of Escherichia coli, opening and closing is pH-dependent. Different roles of the extracellular loops in this process were proposed, and X-ray and solution NMR studies were divergent. Here, we report the structure of outer membrane protein G investigated in bilayers of E. coli lipid extracts by magic-angle-spinning NMR. In total, 1847 inter-residue 1H-1H and 13C-13C distance restraints, 256 torsion angles, but no hydrogen bond restraints are used to calculate the structure. The length of ß-strands is found to vary beyond the membrane boundary, with strands 6-8 being the longest and the extracellular loops 3 and 4 well ordered. The site of barrel closure at strands 1 and 14 is more disordered than most remaining strands, with the flexibility decreasing toward loops 3 and 4. Loop 4 presents a well-defined helix.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Membrana Dobles de Lípidos/química , Porinas/química , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Secundaria de Proteína
20.
Cell Chem Biol ; 24(12): 1523-1536.e4, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29107700

RESUMEN

Rhomboid-family intramembrane proteases regulate important biological processes and have been associated with malaria, cancer, and Parkinson's disease. However, due to the lack of potent, selective, and pharmacologically compliant inhibitors, the wide therapeutic potential of rhomboids is currently untapped. Here, we bridge this gap by discovering that peptidyl α-ketoamides substituted at the ketoamide nitrogen by hydrophobic groups are potent rhomboid inhibitors active in the nanomolar range, surpassing the currently used rhomboid inhibitors by up to three orders of magnitude. Such peptidyl ketoamides show selectivity for rhomboids, leaving most human serine hydrolases unaffected. Crystal structures show that these compounds bind the active site of rhomboid covalently and in a substrate-like manner, and kinetic analysis reveals their reversible, slow-binding, non-competitive mechanism. Since ketoamides are clinically used pharmacophores, our findings uncover a straightforward modular way for the design of specific inhibitors of rhomboid proteases, which can be widely applicable in cell biology and drug discovery.


Asunto(s)
Diseño de Fármacos , Péptido Hidrolasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Bacterias Gramnegativas/enzimología , Bacterias Grampositivas/enzimología , Modelos Moleculares , Conformación Molecular , Inhibidores de Serina Proteinasa/síntesis química , Inhibidores de Serina Proteinasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA