Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37910411

RESUMEN

The electromyography (EMG) cocontraction index (CCI) given by the antagonistic/agonistic Root Mean Square (RMS) amplitude ratio of the same muscle is a qualified biomarker used for spastic cocontraction quantification and management in cerebral palsy children. However, this normative EMG ratio is likely subject to a potential source of errors with biased estimates when measuring the gastrocnemius plantar flexors activity. Due to the uneven distribution of electrical activity within the muscle volume, cocontraction levels can be misestimated, if EMGs are obtained from the sole traditional bipolar sensor location recommended by SENIAM. This preliminary study, on 10 healthy children (mean age 10 yr), investigated whether surface EMG detected proximally and distally via two pairs of bipolar electrodes, within the medial gastrocnemius (MG), provides a significant difference in CCI estimates during non-dynamic (isometric dorsiflexion) and dynamic (swing phases of gait) conditions. Gait cycles were extracted from Inertial Measurement Unit sensors. Medial gastrocnemius activity was greater distally than proximally during plantar flexion when it acts as an agonist (~24±18%) and it was greater proximally during dorsiflexion (~23±9%) when it is acting as an antagonist. As a direct consequence, CCI estimates from the conventional sensor location were significantly different (~36%) from the CCIs computed by considering broader MG regions. This difference arose in all subjects during isometric efforts and in two of 10 healthy children during the swing phase of gait who presented cocontraction patterns ( [Formula: see text]). EMG bipolar sampling encompassing proximal and distal gastrocnemius muscle regions may reduce bias in CCI computation and provide a more representative and accurate cocontraction index that is especially important for comparisons to the diseased state.


Asunto(s)
Espasticidad Muscular , Músculo Esquelético , Humanos , Niño , Músculo Esquelético/fisiología , Electromiografía , Marcha/fisiología , Electrodos
2.
J Rehabil Med ; 55: jrm7130, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37548420

RESUMEN

OBJECTIVE: Impaired ankle dorsiflexion in hemiparesis may be treated with ankle-foot orthosis or functional electrical stimulation. Semi-implanted selective functional electrical stimulation uses independent stimulations of deep and superficial peroneal nerves. The aim of this study was to compare gait kinematics using ankle-foot orthosis or semi-implanted selective functional electrical stimulation over 6 months in hemiparesis. METHODS: Subjects with chronic hemiparesis, randomized into ankle-foot orthosis or semi-implanted selective functional electrical stimulation groups, underwent comfortable gait analysis without and with device OFF and ON, before, and 3 and 6 months after treatment onset. The effects of condition, visit and group on gait kinematics (analysis of variance; ANOVA) were analysed. RESULTS: A total of 27 subjects were included (ankle-foot orthosis, n = 13; semi-implanted selective functional electrical stimulation, n = 14). The only between-group difference in changes from OFF to ON conditions was a deteriorated ankle dorsiflexion speed with ankle-foot orthosis at month 6 (condition*group, p = 0.04; ankle-foot orthosis, -60%, p = 0.02; semi-implanted selective functional electrical stimulation, non significant). Both groups pooled, from OFF to ON gait speed (+ 0.07 m/s; + 10%), cadence (+ 4%), step length (+ 6%) and peak ankle dorsiflexion (+ 6°) increased, and peak ankle inversion (-5°) and peak knee flexion (-2°) decreased (p < 0.001); finally, peak knee flexion in the OFF condition increased (+ 2°, p = 0.03). CONCLUSION: Semi-implanted selective functional electrical stimulation and ankle-foot orthosis similarly impacted gait kinematics in chronic hemiparesis after 6 months of use. Ankle dorsiflexion speed in swing deteriorated markedly with ankle-foot orthosis.


Asunto(s)
Ortesis del Pié , Trastornos Neurológicos de la Marcha , Humanos , Tobillo , Nervio Peroneo/fisiología , Fenómenos Biomecánicos , Resultado del Tratamiento , Marcha/fisiología , Paresia
3.
Neurorehabil Neural Repair ; 36(4-5): 298-305, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35168439

RESUMEN

BACKGROUND: The integration of oxygen cost into the accelerometer's algorithms improves accuracy of total energy expenditure (TEE) values as post-stroke individuals walk. Recent work has shown that oxygen cost can be estimated from specific prediction equations for stroke patients. OBJECTIVE: The objective is to the validity of the different oxygen cost estimation equations available in the literature for calculating TEE using ActigraphGT3x as individuals with stroke sequelae walk. METHOD: Individuals with stroke sequelae who were able to walk without human assistance were included. The TEE was calculated by multiplying the walking distance provided by an ActigraphGT3x worn on the healthy ankle and the patient's oxygen cost estimated from the selected prediction equations. The TEE values from each equation were compared to the TEE values measured by indirect calorimetry. The validity of the prediction methods was evaluated by Bland-Altman analysis (mean bias (MB) and limits of agreement (LoA) values). RESULTS: We included 26 stroke patients (63.5 years). Among the selected equations, those of Compagnat and Polese obtained the best validity parameters for the ActigraphGT3x: MBCompagnat = 1.2 kcal, 95% LoACompagnat = [-12.0; 14.3] kcal and MBPolese = 3.5 kcal, 95% LoAPolese = [-9.2; 16.1] kcal. For comparison, the estimated TEE value according to the manufacturer's algorithm reported MBManufacturer = -15 kcal, 95% LoAManufacturer = [-52.9; 22.8] kcal. CONCLUSION: The Polese and Compagnat equations offer the best validity parameters in comparison with the criterion method. Using oxygen cost prediction equations is a promising approach to improving assessment of TEE by accelerometers in post-stroke individuals.


Asunto(s)
Oxígeno , Accidente Cerebrovascular , Acelerometría , Calorimetría Indirecta , Metabolismo Energético , Humanos , Reproducibilidad de los Resultados , Caminata
4.
Hum Mov Sci ; 80: 102875, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34736019

RESUMEN

OBJECTIVE: Muscle clinical metrics are crucial for spastic cocontraction management in children with Cerebral Palsy (CP). We investigated whether the ankle plantar flexors cocontraction index (CCI) normalized with respect to the bipedal heel rise (BHR) approach provides more robust spastic cocontraction estimates during gait than those obtained through the widely accepted standard maximal isometric plantar flexion (IPF). METHODS: Ten control and 10 CP children with equinus gait pattern performed the BHR and IPF testing and walked barefoot 10-m distance. We compared agonist medial gastrocnemius EMG during both testing and CCIs obtained as the ratios of antagonist EMG during swing phase of gait and either BHR or IPF agonist EMG. RESULTS: Agonist EMG values from the BHR were: (i) internally reliable (Cronbach's α = 0.993), (ii) ~50 ± 0.4% larger than IPF, (iii) and positively correlated. Derived CCIs were significantly smaller (p < 0.05) in both populations. CONCLUSION: The bipedal heel rise approach may be accurate enough to reveal greater agonist activity of plantar flexors than the maximal isometric plantar flexion and seems to be more appropriate to obtain cocontraction estimates during swing of gait. SIGNIFICANCE: This modified biomarker may represent a step forward towards improved accuracy of spastic gait management in pediatric.


Asunto(s)
Parálisis Cerebral , Biomarcadores , Niño , Electromiografía , Marcha , Humanos , Espasticidad Muscular
5.
Clin Biomech (Bristol, Avon) ; 89: 105459, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34438333

RESUMEN

BACKGROUND: Descending command in hemiparesis is reduced to agonists and misdirected to antagonists. We monitored agonist and antagonist activation along the swing phase of gait, comparing paretic and non-paretic legs. METHODS: Forty-two adults with chronic hemiparesis underwent gait analysis with bilateral EMG from tibialis anterior, soleus and gastrocnemius medialis. We monitored ankle and knee positions, and coefficients of agonist activation in tibialis anterior and of antagonist activation in soleus and gastrocnemius medialis over the three thirds of swing phase. These coefficients were defined as the ratio of the root-mean-square EMG from one muscle over any period to the root-mean-square EMG from the same muscle over 100 ms of its maximal voluntary isometric contraction. FINDINGS: As against the non-paretic side, the paretic side showed lesser ankle dorsiflexion and knee flexion (P < 1.E-5), with higher coefficients of agonist activation in tibialis anterior (+100 ± 28%, P < 0.05), and of antagonist activation in soleus (+224 ± 41%, P < 0.05) and gastrocnemius medialis (+276 ± 49%, P < 0.05). On the paretic side, coefficient of agonist activation in tibialis anterior decreased from mid-swing on; coefficients of antagonist activation in soleus and gastrocnemius medialis increased and ankle dorsiflexion decreased in late swing (P < 0.05). INTERPRETATION: During the swing phase in hemiparesis, normalized tibialis anterior recruitment is higher on the paretic than on the non-paretic leg, failing to compensate for a marked increase in plantar flexor activation (cocontraction). The situation deteriorates along swing with a decrease in tibialis anterior recruitment in parallel with an increase in plantar flexor activation, both likely related to gastrocnemius stretch during knee re-extension. Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT03119948.


Asunto(s)
Tobillo , Marcha , Adulto , Articulación del Tobillo , Electromiografía , Humanos , Extremidad Inferior , Músculo Esquelético
6.
J Neuroeng Rehabil ; 15(1): 31, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636105

RESUMEN

BACKGROUND: Freezing of gait and falls represent a major burden in patients with advanced forms of Parkinson's disease (PD). These axial motor signs are not fully alleviated by drug treatment or deep-brain stimulation. Recently, virtual reality has emerged as a rehabilitation option for these patients. In this pilot study, we aim to determine the feasibility and acceptability of rehabilitation with a customised videogame to treat gait and balance disorders in PD patients, and assess its effects on these disabling motor signs. METHODS: We developed a customised videogame displayed on a screen using the Kinect system. To play, the patient had to perform large amplitude and fast movements of all four limbs, pelvis and trunk, in response to visual and auditory cueing, to displace an avatar to collect coins and avoid obstacles to gain points. We tested ten patients with advanced forms of PD (median disease duration = 16.5 years) suffering from freezing of gait and/or falls (Hoehn&Yahr score ≥ 3) resistant to antiparkinsonian treatment and deep brain stimulation. Patients performed 18 training sessions during a 6-9 week period. We measured the feasibility and acceptability of our rehabilitation programme and its effects on parkinsonian disability, gait and balance disorders (with clinical scales and kinematics recordings), positive and negative affects, and quality of life, after the 9th and 18th training sessions and 3 months later. RESULTS: All patients completed the 18 training sessions with high feasibility, acceptability and satisfaction scores. After training, the freezing-of-gait questionnaire, gait-and-balance scale and axial score significantly decreased by 39, 38 and 41%, respectively, and the activity-balance confidence scale increased by 35%. Kinematic gait parameters also significantly improved with increased step length and gait velocity and decreased double-stance time. Three months after the final session, no significant change persisted except decreased axial score and increased step length and velocity. CONCLUSIONS: This study suggests that rehabilitation with a customised videogame to treat gait and balance disorders is feasible, well accepted, and effective in parkinsonian patients. These data serve as preliminary evidence for further larger and controlled studies to propose this customised videogame rehabilitation programme at home. TRIAL REGISTRATION: ClinicalTrials.gov NCT02469350 .


Asunto(s)
Accidentes por Caídas/prevención & control , Terapia por Ejercicio/métodos , Trastornos Neurológicos de la Marcha/rehabilitación , Enfermedad de Parkinson/rehabilitación , Juegos de Video , Anciano , Estudios de Factibilidad , Femenino , Trastornos Neurológicos de la Marcha/etiología , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/complicaciones , Proyectos Piloto , Equilibrio Postural/fisiología
7.
J Electromyogr Kinesiol ; 38: 34-43, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29156320

RESUMEN

Proper muscle activity quantification is highly relevant to monitor and treat spastic cocontraction. As activity may distribute unevenly within muscle volumes, particularly for pennate calf muscles, surface electromyograms (EMGs) detected by traditional bipolar montage may provide biased estimations of muscle activity. We compared cocontraction estimates obtained using bipolar vs grids of electrodes (high-density EMG, HD-EMG). EMGs were collected from medial gastrocnemius, soleus and tibialis anterior during isometric plantar and dorsi-flexion efforts at three levels (30%, 70% and 100% MVC), knee flexed and extended. Cocontraction index (CCI) was estimated separately for each electrode pair in the grid. While soleus and tibialis anterior CCI estimates did not depend on the detection system considered, for gastrocnemius bipolar electrodes provided larger cocontraction estimates than HD-EMG at highest effort levels, at both knee angles (ANOVA; P < .001). Interestingly, HD-EMG detected greater gastrocnemius EMGs distally during plantar flexions, and greater CCI values proximally during dorsiflexions. These results suggest that bipolar electrodes: (i) provide reliable estimates of soleus and tibialis anterior cocontraction; (ii) may under-or overestimate gastrocnemius cocontraction, depending on their distal or proximal position.


Asunto(s)
Electromiografía/métodos , Pierna/fisiología , Contracción Muscular , Músculo Esquelético/fisiología , Adulto , Electromiografía/normas , Humanos , Masculino
8.
J Neural Transm (Vienna) ; 122(8): 1089-97, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25702036

RESUMEN

In spastic paresis, stretch applied to the antagonist increases its inappropriate recruitment during agonist command (spastic co-contraction). It is unknown whether antagonist stretch: (1) also affects agonist recruitment; (2) alters effort perception. We quantified voluntary activation of ankle dorsiflexors, effort perception, and plantar flexor co-contraction during graded dorsiflexion efforts at two gastrocnemius lengths. Eighteen healthy (age 41 ± 13) and 18 hemiparetic (age 54 ± 12) subjects performed light, medium and maximal isometric dorsiflexion efforts with the knee flexed or extended. We determined dorsiflexor torque, Root Mean Square EMG and Agonist Recruitment/Co-contraction Indices (ARI/CCI) from the 500 ms peak voluntary agonist recruitment in a 5-s maximal isometric effort in tibialis anterior, soleus and medial gastrocnemius. Subjects retrospectively reported effort perception on a 10-point visual analog scale. During gastrocnemius stretch in hemiparetic subjects, we observed: (1) a 25 ± 7 % reduction of tibialis anterior voluntary activation (maximum reduction 98 %; knee extended vs knee flexed; p = 0.007, ANOVA); (2) an increase in dorsiflexion effort perception (p = 0.03, ANCOVA). Such changes did not occur in healthy subjects. Effort perception depended on tibialis anterior recruitment only (ßARI(TA) = 0.61, p < 0.01) in healthy subjects (not on gastrocnemius medialis co-contraction) while it depended on both tibialis anterior agonist recruitment (ßARI(TA) = 0.41, p < 0.001) and gastrocnemius medialis co-contraction (ßCCI(MG) = 0.43, p < 0.001) in hemiparetic subjects. In hemiparesis, voluntary ability to recruit agonist motoneurones is impaired--sometimes abolished--by antagonist stretch, a phenomenon defined here as stretch-sensitive paresis. In addition, spastic co-contraction increases effort perception, an additional incentive to evaluate and treat this phenomenon.


Asunto(s)
Extremidad Inferior/fisiopatología , Contracción Muscular/fisiología , Músculo Esquelético/fisiopatología , Paresia/fisiopatología , Percepción , Adulto , Electromiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad
9.
Clin Neurophysiol ; 124(3): 528-35, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23063291

RESUMEN

OBJECTIVE: Spastic co-contraction is a misdirected supraspinal command in spastic paresis. We quantified the influence of effort and gastrocnemius stretch on plantar flexor co-contraction and torque during dorsiflexion efforts in hemiparetic and healthy subjects. METHODS: Eighteen healthy and 18 hemiparetic subjects produced "light", "medium" and "maximal" isometric dorsi- and plantar flexion efforts in two gastrocnemius positions, stretched (knee extended) and slack (knee flexed), ankle at 90°. Measuring ankle torque and soleus and medial gastrocnemius surface EMG, we calculated the co-contraction index (CCI) as the ratio of the EMG root mean square (RMS) from the muscle acting as antagonist over its RMS when acting as agonist in a maximal effort, in each knee position. RESULTS: Co-contraction was abnormally high in hemiparetic subjects at all effort levels, e.g. for soleus in the knee extended position (CCI(SO) 0.37±0.08 in hemiparesis vs 0.18±0.02 in healthy subjects, p<0.05). In hemiparetic subjects knee extended, dorsiflexion torque, (i) was reversed or canceled in 26% trials; and (ii) correlated negatively with plantar flexor CCI. SIGNIFICANCE: Major dynamometric impact of co-contraction with stretched position of the cocontracting muscle may justify muscle length modifications (e.g. through aggressive stretch programs) to improve function in spastic paresis.


Asunto(s)
Articulación del Tobillo/fisiopatología , Tobillo/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiopatología , Paresia/fisiopatología , Adulto , Anciano , Fenómenos Biomecánicos/fisiología , Femenino , Humanos , Articulación de la Rodilla/fisiología , Masculino , Persona de Mediana Edad , Torque
10.
Muscle Nerve ; 46(6): 926-31, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23042034

RESUMEN

INTRODUCTION: In this study of spastic hemiparesis we evaluated cocontraction during sustained agonist/antagonist efforts, before and after botulinum toxin (BoNT) injection in 1 agonist. METHODS: Nineteen hemiparetic subjects performed maximal isometric elbow flexion/extension efforts with the elbow at 100° (extensors stretched). Using flexor and extensor surface electromyography we calculated agonist recruitment/cocontraction indices from 500-ms peak voluntary agonist recruitment, before and 1 month after onabotulinumtoxinA injection (160 U) into biceps brachii. RESULTS: Before injection, agonist recruitment and cocontraction indices were higher in extensors than flexors [0.74 ± 0.15 vs. 0.59 ± 0.10 (P < 0.01) and 0.43 ± 0.25 vs. 0.25 ± 0.13 (P < 0.05), respectively]. Biceps injection decreased extensor cocontraction index (-35%, P < 0.05) while increasing flexor agonist recruitment and cocontraction indices. CONCLUSIONS: In spastic hemiparesis, stretch may facilitate agonist recruitment and spastic cocontraction. In the non-injected antagonist, cocontraction may be reduced by enhanced reciprocal inhibition from a more relaxed, and therefore stretched, agonist, or through decreased recurrent inhibition from the injected muscle.


Asunto(s)
Toxinas Botulínicas Tipo A/uso terapéutico , Espasticidad Muscular/tratamiento farmacológico , Espasticidad Muscular/etiología , Fármacos Neuromusculares/uso terapéutico , Paresia/complicaciones , Adulto , Anciano , Método Doble Ciego , Electromiografía , Femenino , Humanos , Contracción Isométrica/efectos de los fármacos , Masculino , Persona de Mediana Edad , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiopatología , Estadísticas no Paramétricas , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...