Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Legal Med ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509248

RESUMEN

Forensic DNA analysis in compromised skeletal remains may pose challenges due to DNA degradation, often resulting in partial or negative autosomal STRs profiles. To address this issue, alternative approaches such as mitochondrial DNA or SNPs typing may be employed; however, they are labour-intensive and costly. Insertion-null alleles (INNULs), short interspersed nuclear elements, have been suggested as a valuable tool for human identification in challenging samples due to their small amplicon size. A commercial kit including 20 INNULs markers along with amelogenin (InnoTyper® 21) has been developed. This study assesses its utility using degraded skeletal remains, comparing the results obtained (the number of detected alleles, RFU values, PHR, and the number of reportable markers) to those obtained using GlobalFiler™. Subsequently, the random match probability of the two profiles for each sample was determined using Familias version 3 to evaluate the power of discrimination of the results obtained from each kit. In every sample, InnoTyper® 21 yielded more alleles, higher RFU values, and a greater number of reportable loci. However, in most cases, both profiles were similarly informative. In conclusion, InnoTyper® 21 serves as a valuable complement to the analysis of challenging samples in cases where a poor or negative profile was obtained.

2.
Forensic Sci Int ; 353: 111856, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863006

RESUMEN

This research evaluates the current DNA quantification (Quantifiler™ Trio, PowerQuant®, Investigator® Quantiplex® Pro and InnoQuant® HY Fast) and autosomal STRs amplification kits (GlobalFiler™, PowerPlex® Fusion 6 C, Investigator® 24Plex QS) using 62 degraded skeletal remains from armed conflicts (petrous bone, femur, tibia, and tooth) with several parameters (autosomal small, large, and male target, degradation index, probability of degradation, number of alleles above analytical threshold, number of alleles above stochastic threshold, RFU, peak height ratio, number of reportable loci). The best qPCR/autosomal STRs amplification tandem was determined by comparing quantification results by a DNA quantity estimation based on sample average RFU. InnoQuant® HY Fast was the most sensitive kit, and no significative differences were observed among amplification kits; however, Investigator® 24 Plex QS was found to be the most sensitive in our samples. That is why InnoQuant™ and Investigator® 24Plex QS were determined to be the best tandem.


Asunto(s)
Dermatoglifia del ADN , Diente , Masculino , Humanos , Dermatoglifia del ADN/métodos , Restos Mortales , Repeticiones de Microsatélite , ADN/análisis , Diente/química
3.
Electrophoresis ; 44(19-20): 1559-1568, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37469183

RESUMEN

Skeletal remains are the only biological material that remains after long periods; however, environmental conditions such as temperature, humidity, and pH affect DNA preservation, turning skeletal remains into a challenging sample for DNA laboratories. Sample selection is a key factor, and femur and tooth have been traditionally recommended as the best substrate of genetic material. Recently, petrous bone (cochlear area) has been suggested as a better option due to its DNA yield. This research aims to evaluate the efficiency of petrous bone compared to other cranium samples (tooth) and postcranial long bones (femur and tibia). A total amount of 88 samples were selected from 38 different individuals. The samples were extracted by using an organic extraction protocol, DNA quantification by Quantifiler Trio kit and amplified with GlobalFiler kit. Results show that petrous bone outperforms other bone remains in quantification data, yielding 15-30 times more DNA than the others. DNA profile data presented likeness between petrous bone and tooth regarding detected alleles; however, the amount of DNA extracted in petrous bones allowed us to obtain more informative DNA profiles with superior quality. In conclusion, petrous bone or teeth sampling is recommended if DNA typing is going to be performed with environmentally degraded skeletal remains.


Asunto(s)
Hueso Petroso , Diente , Humanos , Tibia , Restos Mortales , ADN/genética , Fémur , Dermatoglifia del ADN/métodos , Repeticiones de Microsatélite
4.
Electrophoresis ; 44(17-18): 1423-1434, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37379235

RESUMEN

Poor nuclear DNA preservation from highly degraded skeletal remains is the most limiting factor for the genetic identification of individuals. Mitochondrial DNA (mtDNA) typing, and especially of the control region (CR), using next-generation sequencing (NGS), enables retrieval of valuable genetic information in forensic contexts where highly degraded human skeletal remains are the only source of genetic material. Currently, NGS commercial kits can type all mtDNA-CR in fewer steps than the conventional Sanger technique. The PowerSeq CRM Nested System kit (Promega Corporation) employs a nested multiplex-polymerase chain reaction (PCR) strategy to amplify and index all mtDNA-CR in a single reaction. Our study analyzes the success of mtDNA-CR typing of highly degraded human skeletons using the PowerSeq CRM Nested System kit. We used samples from 41 individuals from different time periods to test three protocols (M1, M2, and M3) based on modifications of PCR conditions. To analyze the detected variants, two bioinformatic procedures were compared: an in-house pipeline and the GeneMarker HTS software. The results showed that many samples were not analyzed when the standard protocol (M1) was used. In contrast, the M3 protocol, which includes 35 PCR cycles and longer denaturation and extension steps, successfully recovered the mtDNA-CR from highly degraded skeletal samples. Mixed base profiles and the percentage of damaged reads were both indicators of possible contamination and can provide better results if used together. Furthermore, our freely available in-house pipeline can provide variants concordant with the forensic software.


Asunto(s)
Restos Mortales , ADN Mitocondrial , Humanos , ADN Mitocondrial/genética , Análisis de Secuencia de ADN , Reacción en Cadena de la Polimerasa , Dermatoglifia del ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
5.
Forensic Sci Int ; 348: 111730, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37224759

RESUMEN

Extracting DNA from degraded human remains poses a challenge for any forensic genetics laboratory, as it requires efficient high-throughput methods. While little research has compared different techniques, silica in suspension has been identified in the literature as the best method for recovering small fragments, which are often present in these types of samples. In this study, we tested five DNA extraction protocols on 25 different degraded skeletal remains. Including the humerus, ulna, tibia, femur, and petrous bone. The five protocols were organic extraction by phenol/chloroform/isoamyl alcohol, silica in suspension, High Pure Nucleic Acid Large Volume silica columns (Roche), InnoXtract™ Bone (InnoGenomics), and PrepFiler™ BTA with AutoMate™ Express robot (ThermoFisher). We analysed five DNA quantification parameters (small human target quantity, large human target quantity, human male target quantity, degradation index, and internal PCR control threshold), and five DNA profile parameters (number of alleles with peak height higher than analytic and stochastic threshold, average relative fluorescence units (RFU), heterozygous balance, and number of reportable loci) were analysed. Our results suggest that organic extraction by phenol/chloroform/isoamyl alcohol was the best performing method in terms of both quantification and DNA profile results. However, Roche silica columns were found to be the most efficient method.


Asunto(s)
Restos Mortales , Cloroformo , Humanos , Masculino , Dermatoglifia del ADN/métodos , Repeticiones de Microsatélite , ADN , Fenol , Dióxido de Silicio
6.
Electrophoresis ; 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002215

RESUMEN

Retrieving DNA from highly degraded human skeletal remains is still a challenge due to low concentration and fragmentation, which makes it difficult to extract and purify. Recent works showed that silica-based methods allow better DNA recovery and this fact may be attributed to the type of bones and the quality of the preserved tissue. However, more systematic studies are needed to evaluate the efficiency of the different silica-based extraction methods considering the type of bones. The main goal of the present study is to establish the best extraction method and the type of bone that can maximize the recovery of PCR-amplifiable DNA and the subsequent retrieval of mitochondrial and nuclear genetic information. Five individuals were selected from an archaeological site located in Catalonia-Spain dating from 5th to 11th centuries AD. For each individual, five samples from different skeletal regions were collected: petrous bone, pulp cavity and cementum of tooth, and rib and limb bones. Four extraction methods were tested, three silica-based (silica in-suspension, HE column and XS plasma column) and the classical method based on phenol-chloroform. Silica in-suspension method from petrous bone and pulp cavity showed the best results. However, the remains preservation will ultimately be the key to the molecular result success.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...