Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Hum Brain Mapp ; 45(6): e26687, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38651629

RESUMEN

The unprecedented increase in life expectancy presents a unique opportunity and the necessity to explore both healthy and pathological aspects of ageing. Electroencephalography (EEG) has been widely used to identify neuromarkers of cognitive ageing due to its affordability and richness in information. However, despite the growing volume of data and methodological advancements, the abundance of contradictory and non-reproducible findings has hindered clinical translation. To address these challenges, our study introduces a comprehensive workflow expanding on previous EEG studies and investigates various static and dynamic power and connectivity estimates as potential neuromarkers of cognitive ageing in a large dataset. We also assess the robustness of our findings by testing their susceptibility to band specification. Finally, we characterise our findings using functionally annotated brain networks to improve their interpretability and multi-modal integration. Our analysis demonstrates the effect of methodological choices on findings and that dynamic rather than static neuromarkers are not only more sensitive but also more robust. Consequently, they emerge as strong candidates for cognitive ageing neuromarkers. Moreover, we were able to replicate the most established EEG findings in cognitive ageing, such as alpha oscillation slowing, increased beta power, reduced reactivity across multiple bands, and decreased delta connectivity. Additionally, when considering individual variations in the alpha band, we clarified that alpha power is characteristic of memory performance rather than ageing, highlighting its potential as a neuromarker for cognitive ageing. Finally, our approach using functionally annotated source reconstruction allowed us to provide insights into domain-specific electrophysiological mechanisms underlying memory performance and ageing. HIGHLIGHTS: We provide an open and reproducible pipeline with a comprehensive workflow to investigate static and dynamic EEG neuromarkers. Neuromarkers related to neural dynamics are sensitive and robust. Individualised alpha power characterises cognitive performance rather than ageing. Functional annotation allows cross-modal interpretation of EEG findings.


Asunto(s)
Electroencefalografía , Envejecimiento Saludable , Humanos , Electroencefalografía/métodos , Envejecimiento Saludable/fisiología , Anciano , Masculino , Adulto , Femenino , Persona de Mediana Edad , Adulto Joven , Envejecimiento Cognitivo/fisiología , Biomarcadores , Red Nerviosa/fisiología , Ondas Encefálicas/fisiología , Ritmo alfa/fisiología , Memoria/fisiología , Envejecimiento/fisiología , Anciano de 80 o más Años
2.
Neuroimage Clin ; 42: 103599, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38608376

RESUMEN

Right hemisphere stroke patients frequently present with a combination of lateralised and non-lateralised attentional deficits characteristic of the neglect syndrome. Attentional deficits are associated with poor functional outcome and are challenging to treat, with non-lateralised deficits often persisting into the chronic stage and representing a common complaint among patients and families. In this study, we investigated the effects of non-invasive brain stimulation on non-lateralised attentional deficits in right-hemispheric stroke. In a randomised double-blind sham-controlled crossover study, twenty-two patients received real and sham transcranial Direct Current Stimulation (tDCS) whilst performing a non-lateralised attentional task. A high definition tDCS montage guided by stimulation modelling was employed to maximise current delivery over the right dorsolateral prefrontal cortex, a key node in the vigilance network. In a parallel study, we examined brain network response to this tDCS montage by carrying out concurrent fMRI during stimulation in healthy participants and patients. At the group level, stimulation improved target detection in patients, reducing overall error rate when compared with sham stimulation. TDCS boosted performance throughout the duration of the task, with its effects briefly outlasting stimulation cessation. Exploratory lesion analysis indicated that response to stimulation was related to lesion location rather than volume. In particular, reduced stimulation response was associated with damage to the thalamus and postcentral gyrus. Concurrent stimulation-fMRI revealed that tDCS did not affect local connectivity but influenced functional connectivity within large-scale networks in the contralesional hemisphere. This combined behavioural and functional imaging approach shows that brain stimulation targeted to surviving tissue in the ipsilesional hemisphere improves non-lateralised attentional deficits following stroke. This effect may be exerted via contralesional network effects.

3.
Front Neurosci ; 18: 1354523, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572149

RESUMEN

Objective: A third of patients with epilepsy continue to have seizures despite receiving adequate antiseizure medication. Transcranial direct current stimulation (tDCS) might be a viable adjunct treatment option, having been shown to reduce epileptic seizures in patients with focal epilepsy. Evidence for the use of tDCS in genetic generalized epilepsy (GGE) is scarce. We aimed to establish the feasibility of applying tDCS during fMRI in patients with GGE to study the acute neuromodulatory effects of tDCS, particularly on sensorimotor network activity. Methods: Seven healthy controls and three patients with GGE received tDCS with simultaneous fMRI acquisition while watching a movie. Three tDCS conditions were applied: anodal, cathodal and sham. Periods of 60 s without stimulation were applied between each stimulation condition. Changes in sensorimotor cortex connectivity were evaluated by calculating the mean degree centrality across eight nodes of the sensorimotor cortex defined by the Automated Anatomical Labeling atlas (primary motor cortex (precentral left and right), supplementary motor area (left and right), mid-cingulum (left and right), postcentral gyrus (left and right)), across each of the conditions, for each participant. Results: Simultaneous tDCS-fMRI was well tolerated in both healthy controls and patients without adverse effects. Anodal and cathodal stimulation reduced mean degree centrality of the sensorimotor network (Friedman's ANOVA with Dunn's multiple comparisons test; adjusted p = 0.02 and p = 0.03 respectively). Mean degree connectivity of the sensorimotor network during the sham condition was not different to the rest condition (adjusted p = 0.94). Conclusion: Applying tDCS during fMRI was shown to be feasible and safe in a small group of patients with GGE. Anodal and cathodal stimulation caused a significant reduction in network connectivity of the sensorimotor cortex across participants. This initial research supports the feasibility of using fMRI to guide and understand network modulation by tDCS that might facilitate its clinical application in GGE in the future.

4.
Hum Mov Sci ; 93: 103180, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38266441

RESUMEN

Developmental Coordination Disorder (DCD) is a movement disorder in which atypical sensory processing may underly movement atypicality. However, whether altered sensory processing is domain-specific or global in nature, are unanswered questions. Here, we measured for the first time, different aspects of sensory processing and spatiotemporal integration in the same cohort of adult participants with DCD (N = 16), possible DCD (pDCD, N = 12) and neurotypical adults (NT, N = 28). Haptic perception was reduced in both DCD and the extended DCD + pDCD groups when compared to NT adults. Audio-visual integration, measured using the sound-induced double flash illusion, was reduced only in DCD participants, and not the DCD + pDCD extended group. While low-level sensory processing was altered in DCD, the more cognitive, higher-level ability to infer temporal dimensions from spatial information, and vice-versa, as assessed with Tau-Kappa effects, was intact in DCD (and extended DCD + pDCD) participants. Both audio-visual integration and haptic perception difficulties correlated with the degree of self-reported DCD symptoms and were most apparent when comparing DCD and NT groups directly, instead of the expanded DCD + pDCD group. The association of sensory difficulties with DCD symptoms suggests that perceptual differences play a role in motor difficulties in DCD via an underlying internal modelling mechanism.


Asunto(s)
Ilusiones , Trastornos de la Destreza Motora , Adulto , Humanos , Desempeño Psicomotor , Trastornos de la Destreza Motora/psicología , Estereognosis , Sensación
6.
Nat Neurosci ; 26(11): 2005-2016, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857774

RESUMEN

The stimulation of deep brain structures has thus far only been possible with invasive methods. Transcranial electrical temporal interference stimulation (tTIS) is a novel, noninvasive technology that might overcome this limitation. The initial proof-of-concept was obtained through modeling, physics experiments and rodent models. Here we show successful noninvasive neuromodulation of the striatum via tTIS in humans using computational modeling, functional magnetic resonance imaging studies and behavioral evaluations. Theta-burst patterned striatal tTIS increased activity in the striatum and associated motor network. Furthermore, striatal tTIS enhanced motor performance, especially in healthy older participants as they have lower natural learning skills than younger subjects. These findings place tTIS as an exciting new method to target deep brain structures in humans noninvasively, thus enhancing our understanding of their functional role. Moreover, our results lay the groundwork for innovative, noninvasive treatment strategies for brain disorders in which deep striatal structures play key pathophysiological roles.


Asunto(s)
Destreza Motora , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Aprendizaje/fisiología , Encéfalo , Cuerpo Estriado/fisiología
7.
Nat Neurosci ; 26(11): 1994-2004, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857775

RESUMEN

Deep brain stimulation (DBS) via implanted electrodes is used worldwide to treat patients with severe neurological and psychiatric disorders. However, its invasiveness precludes widespread clinical use and deployment in research. Temporal interference (TI) is a strategy for non-invasive steerable DBS using multiple kHz-range electric fields with a difference frequency within the range of neural activity. Here we report the validation of the non-invasive DBS concept in humans. We used electric field modeling and measurements in a human cadaver to verify that the locus of the transcranial TI stimulation can be steerably focused in the hippocampus with minimal exposure to the overlying cortex. We then used functional magnetic resonance imaging and behavioral experiments to show that TI stimulation can focally modulate hippocampal activity and enhance the accuracy of episodic memories in healthy humans. Our results demonstrate targeted, non-invasive electrical stimulation of deep structures in the human brain.


Asunto(s)
Encéfalo , Estimulación Encefálica Profunda , Humanos , Encéfalo/fisiología , Hipocampo/fisiología , Estimulación Eléctrica , Corteza Cerebral , Electrodos Implantados , Estimulación Encefálica Profunda/métodos
8.
Transl Psychiatry ; 13(1): 279, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37582922

RESUMEN

One of the most critical challenges in using noninvasive brain stimulation (NIBS) techniques for the treatment of psychiatric and neurologic disorders is inter- and intra-individual variability in response to NIBS. Response variations in previous findings suggest that the one-size-fits-all approach does not seem the most appropriate option for enhancing stimulation outcomes. While there is a growing body of evidence for the feasibility and effectiveness of individualized NIBS approaches, the optimal way to achieve this is yet to be determined. Transcranial electrical stimulation (tES) is one of the NIBS techniques showing promising results in modulating treatment outcomes in several psychiatric and neurologic disorders, but it faces the same challenge for individual optimization. With new computational and methodological advances, tES can be integrated with real-time functional magnetic resonance imaging (rtfMRI) to establish closed-loop tES-fMRI for individually optimized neuromodulation. Closed-loop tES-fMRI systems aim to optimize stimulation parameters based on minimizing differences between the model of the current brain state and the desired value to maximize the expected clinical outcome. The methodological space to optimize closed-loop tES fMRI for clinical applications includes (1) stimulation vs. data acquisition timing, (2) fMRI context (task-based or resting-state), (3) inherent brain oscillations, (4) dose-response function, (5) brain target trait and state and (6) optimization algorithm. Closed-loop tES-fMRI technology has several advantages over non-individualized or open-loop systems to reshape the future of neuromodulation with objective optimization in a clinically relevant context such as drug cue reactivity for substance use disorder considering both inter and intra-individual variations. Using multi-level brain and behavior measures as input and desired outcomes to individualize stimulation parameters provides a framework for designing personalized tES protocols in precision psychiatry.


Asunto(s)
Enfermedades del Sistema Nervioso , Estimulación Transcraneal de Corriente Directa , Humanos , Encéfalo , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Magnética Transcraneal/métodos , Estimulación Eléctrica
9.
Hum Brain Mapp ; 44(15): 5030-5046, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37471699

RESUMEN

Switching is a difficult cognitive process characterised by costs in task performance; specifically, slowed responses and reduced accuracy. It is associated with the recruitment of a large coalition of task-positive regions including those referred to as the multiple demand cortex (MDC). The neural correlates of switching not only include the MDC, but occasionally the default mode network (DMN), a characteristically task-negative network. To unpick the role of the DMN during switching we collected fMRI data from 24 participants playing a switching paradigm that perturbed predictability (i.e., cognitive load) across three switch dimensions-sequential, perceptual, and spatial predictability. We computed the activity maps unique to switch vs. stay trials and all switch dimensions, then evaluated functional connectivity under these switch conditions by computing the pairwise mutual information functional connectivity (miFC) between regional timeseries. Switch trials exhibited an expected cost in reaction time while sequential predictability produced a significant benefit to task accuracy. Our results showed that switch trials recruited a broader activity map than stay trials, including regions of the DMN, the MDC, and task-positive networks such as visual, somatomotor, dorsal, salience/ventral attention networks. More sequentially predictable trials recruited increased activity in the somatomotor and salience/ventral attention networks. Notably, changes in sequential and perceptual predictability, but not spatial predictability, had significant effects on miFC. Increases in perceptual predictability related to decreased miFC between control, visual, somatomotor, and DMN regions, whereas increases in sequential predictability increased miFC between regions in the same networks, as well as regions within ventral attention/ salience, dorsal attention, limbic, and temporal parietal networks. These results provide novel clues as to how DMN may contribute to executive task performance. Specifically, the improved task performance, unique activity, and increased miFC associated with increased sequential predictability suggest that the DMN may coordinate more strongly with the MDC to generate a temporal schema of upcoming task events, which may attenuate switching costs.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Memoria a Corto Plazo/fisiología , Imagen por Resonancia Magnética , Corteza Cerebral , Red Nerviosa/diagnóstico por imagen
10.
Neuroimage ; 271: 119945, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870433

RESUMEN

Transient patterns of interregional connectivity form and dissipate in response to varying cognitive demands. Yet, it is not clear how different cognitive demands influence brain state dynamics, and whether these dynamics relate to general cognitive ability. Here, using functional magnetic resonance imaging (fMRI) data, we characterised shared, recurrent, global brain states in 187 participants across the working memory, emotion, language, and relation tasks from the Human Connectome Project. Brain states were determined using Leading Eigenvector Dynamics Analysis (LEiDA). In addition to the LEiDA-based metrics of brain state lifetimes and probabilities, we also computed information-theoretic measures of Block Decomposition Method of complexity, Lempel-Ziv complexity and transition entropy. Information theoretic metrics are notable in their ability to compute relationships amongst sequences of states over time, compared to lifetime and probability, which capture the behaviour of each state in isolation. We then related task-based brain state metrics to fluid intelligence. We observed that brain states exhibited stable topology across a range of numbers of clusters (K = 2:15). Most metrics of brain state dynamics, including state lifetime, probability, and all information theoretic metrics, reliably differed between tasks. However, relationships between state dynamic metrics and cognitive abilities varied according to the task, the metric, and the value of K, indicating that there are contextual relationships between task-dependant state dynamics and trait cognitive ability. This study provides evidence that the brain reconfigures across time in response to cognitive demands, and that there are contextual, rather than generalisable, relationships amongst task, state dynamics, and cognitive ability.


Asunto(s)
Encéfalo , Cognición , Humanos , Encéfalo/fisiología , Cognición/fisiología , Memoria a Corto Plazo , Imagen por Resonancia Magnética/métodos , Emociones
11.
Neuroimage ; 272: 120042, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36965862

RESUMEN

Brain stimulation is an increasingly popular neuromodulatory tool used in both clinical and research settings; however, the effects of brain stimulation, particularly those of non-invasive stimulation, are variable. This variability can be partially explained by an incomplete mechanistic understanding, coupled with a combinatorial explosion of possible stimulation parameters. Computational models constitute a useful tool to explore the vast sea of stimulation parameters and characterise their effects on brain activity. Yet the utility of modelling stimulation in-silico relies on its biophysical relevance, which needs to account for the dynamics of large and diverse neural populations and how underlying networks shape those collective dynamics. The large number of parameters to consider when constructing a model is no less than those needed to consider when planning empirical studies. This piece is centred on the application of phenomenological and biophysical models in non-invasive brain stimulation. We first introduce common forms of brain stimulation and computational models, and provide typical construction choices made when building phenomenological and biophysical models. Through the lens of four case studies, we provide an account of the questions these models can address, commonalities, and limitations across studies. We conclude by proposing future directions to fully realise the potential of computational models of brain stimulation for the design of personalized, efficient, and effective stimulation strategies.


Asunto(s)
Modelos Neurológicos , Técnicas Estereotáxicas , Humanos , Biofisica , Encéfalo/fisiología
12.
Front Psychiatry ; 13: 860448, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35492696

RESUMEN

Excitatory/inhibitory imbalance has been suggested as a neurobiological substrate of the cognitive symptomatology in Autism Spectrum Disorder (ASD). Studies using magnetic resonance spectroscopy (MRS) attempted to characterize GABA and Glutamate brain levels in ASD. However mixed findings have been reported. Here, we characterize both neurochemical and physiological aspects of GABA system in ASD by implementing a more comprehensive approach combining MRS and transcranial magnetic stimulation (TMS). A group of 16 young ASD adults and a group of 17 controls participated in this study. We employed one MRS session to assess motor cortex GABA+ and Glutamate+Glutamine (Glx) levels using MEGAPRESS and PRESS sequences, respectively. Additionally, a TMS experiment was implemented including paired-pulse (SICI, ICF and LICI), input-output curve and cortical silent period to probe cortical excitability. Our results showed a significantly increased Glx, with unchanged GABA+ levels in the ASD group compared with controls. Single TMS measures did not differ between groups, although exploratory within-group analysis showed impaired inhibition in SICI5ms, in ASD. Importantly, we observed a correlation between GABA levels and measures of the input-output TMS recruitment curve (slope and MEP amplitude) in the control group but not in ASD, as further demonstrated by direct between group comparisons. In this exploratory study, we found evidence of increased Glx levels which may contribute to ASD excitatory/inhibitory imbalance while highlighting the relevance of conducting further larger-scale studies to investigate the GABA system from complementary perspectives, using both MRS and TMS techniques.

13.
Nat Protoc ; 17(3): 596-617, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35121855

RESUMEN

Low-intensity transcranial electrical stimulation (tES), including alternating or direct current stimulation, applies weak electrical stimulation to modulate the activity of brain circuits. Integration of tES with concurrent functional MRI (fMRI) allows for the mapping of neural activity during neuromodulation, supporting causal studies of both brain function and tES effects. Methodological aspects of tES-fMRI studies underpin the results, and reporting them in appropriate detail is required for reproducibility and interpretability. Despite the growing number of published reports, there are no consensus-based checklists for disclosing methodological details of concurrent tES-fMRI studies. The objective of this work was to develop a consensus-based checklist of reporting standards for concurrent tES-fMRI studies to support methodological rigor, transparency and reproducibility (ContES checklist). A two-phase Delphi consensus process was conducted by a steering committee (SC) of 13 members and 49 expert panelists through the International Network of the tES-fMRI Consortium. The process began with a circulation of a preliminary checklist of essential items and additional recommendations, developed by the SC on the basis of a systematic review of 57 concurrent tES-fMRI studies. Contributors were then invited to suggest revisions or additions to the initial checklist. After the revision phase, contributors rated the importance of the 17 essential items and 42 additional recommendations in the final checklist. The state of methodological transparency within the 57 reviewed concurrent tES-fMRI studies was then assessed by using the checklist. Experts refined the checklist through the revision and rating phases, leading to a checklist with three categories of essential items and additional recommendations: (i) technological factors, (ii) safety and noise tests and (iii) methodological factors. The level of reporting of checklist items varied among the 57 concurrent tES-fMRI papers, ranging from 24% to 76%. On average, 53% of checklist items were reported in a given article. In conclusion, use of the ContES checklist is expected to enhance the methodological reporting quality of future concurrent tES-fMRI studies and increase methodological transparency and reproducibility.


Asunto(s)
Lista de Verificación , Estimulación Transcraneal de Corriente Directa , Consenso , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados
14.
Brain Commun ; 3(3): fcab175, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485905

RESUMEN

The cognitive deficits associated with Parkinson's disease vary across individuals and change across time, with implications for prognosis and treatment. Key outstanding challenges are to define the distinct behavioural characteristics of this disorder and develop diagnostic paradigms that can assess these sensitively in individuals. In a previous study, we measured different aspects of attentional control in Parkinson's disease using an established fMRI switching paradigm. We observed no deficits for the aspects of attention the task was designed to examine; instead those with Parkinson's disease learnt the operational requirements of the task more slowly. We hypothesized that a subset of people with early-to-mid stage Parkinson's might be impaired when encoding rules for performing new tasks. Here, we directly test this hypothesis and investigate whether deficits in instruction-based learning represent a characteristic of Parkinson's Disease. Seventeen participants with Parkinson's disease (8 male; mean age: 61.2 years), 18 older adults (8 male; mean age: 61.3 years) and 20 younger adults (10 males; mean age: 26.7 years) undertook a simple instruction-based learning paradigm in the MRI scanner. They sorted sequences of coloured shapes according to binary discrimination rules that were updated at two-minute intervals. Unlike common reinforcement learning tasks, the rules were unambiguous, being explicitly presented; consequently, there was no requirement to monitor feedback or estimate contingencies. Despite its simplicity, a third of the Parkinson's group, but only one older adult, showed marked increases in errors, 4 SD greater than the worst performing young adult. The pattern of errors was consistent, reflecting a tendency to misbind discrimination rules. The misbinding behaviour was coupled with reduced frontal, parietal and anterior caudate activity when rules were being encoded, but not when attention was initially oriented to the instruction slides or when discrimination trials were performed. Concomitantly, Magnetic Resonance Spectroscopy showed reduced gamma-Aminobutyric acid levels within the mid-dorsolateral prefrontal cortices of individuals who made misbinding errors. These results demonstrate, for the first time, that a subset of early-to-mid stage people with Parkinson's show substantial deficits when binding new task rules in working memory. Given the ubiquity of instruction-based learning, these deficits are likely to impede daily living. They will also confound clinical assessment of other cognitive processes. Future work should determine the value of instruction-based learning as a sensitive early marker of cognitive decline and as a measure of responsiveness to therapy in Parkinson's disease.

15.
Brain Stimul ; 14(5): 1261-1270, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34438046

RESUMEN

BACKGROUND: Transcranial direct current stimulation (tDCS) is a form of noninvasive brain stimulation whose potential as a cognitive therapy is hindered by our limited understanding of how participant and experimental factors influence its effects. Using functional MRI to study brain networks, we have previously shown in healthy controls that the physiological effects of tDCS are strongly influenced by brain state. We have additionally shown, in both healthy and traumatic brain injury (TBI) populations, that the behavioral effects of tDCS are positively correlated with white matter (WM) structure. OBJECTIVES: In this study we investigate how these two factors, WM structure and brain state, interact to shape the effect of tDCS on brain network activity. METHODS: We applied anodal, cathodal and sham tDCS to the right inferior frontal gyrus (rIFG) of healthy (n = 22) and TBI participants (n = 34). We used the Choice Reaction Task (CRT) performance to manipulate brain state during tDCS. We acquired simultaneous fMRI to assess activity of cognitive brain networks and used Fractional Anisotropy (FA) as a measure of WM structure. RESULTS: We find that the effects of tDCS on brain network activity in TBI participants are highly dependent on brain state, replicating findings from our previous healthy control study in a separate, patient cohort. We then show that WM structure further modulates the brain-state dependent effects of tDCS on brain network activity. These effects are not unidirectional - in the absence of task with anodal and cathodal tDCS, FA is positively correlated with brain activity in several regions of the default mode network. Conversely, with cathodal tDCS during CRT performance, FA is negatively correlated with brain activity in a salience network region. CONCLUSIONS: Our results show that experimental and participant factors interact to have unexpected effects on brain network activity, and that these effects are not fully predictable by studying the factors in isolation.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Corteza Prefrontal , Sustancia Blanca/diagnóstico por imagen
16.
Nat Commun ; 12(1): 2072, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824305

RESUMEN

Despite a century of research, it remains unclear whether human intelligence should be studied as one dominant, several major, or many distinct abilities, and how such abilities relate to the functional organisation of the brain. Here, we combine psychometric and machine learning methods to examine in a data-driven manner how factor structure and individual variability in cognitive-task performance relate to dynamic-network connectomics. We report that 12 sub-tasks from an established intelligence test can be accurately multi-way classified (74%, chance 8.3%) based on the network states that they evoke. The proximities of the tasks in behavioural-psychometric space correlate with the similarities of their network states. Furthermore, the network states were more accurately classified for higher relative to lower performing individuals. These results suggest that the human brain uses a high-dimensional network-sampling mechanism to flexibly code for diverse cognitive tasks. Population variability in intelligence test performance relates to the fidelity of expression of these task-optimised network states.


Asunto(s)
Pruebas de Inteligencia , Neuroimagen , Adolescente , Adulto , Conducta , Encéfalo/fisiología , Mapeo Encefálico , Cognición/fisiología , Conectoma , Femenino , Humanos , Aprendizaje Automático , Masculino , Neuronas/fisiología , Descanso , Análisis y Desempeño de Tareas , Adulto Joven
17.
PLoS Comput Biol ; 16(12): e1008448, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33259483

RESUMEN

The propagation of epileptic seizure activity in the brain is a widespread pathophysiology that, in principle, should yield to intervention techniques guided by mathematical models of neuronal ensemble dynamics. During a seizure, neural activity will deviate from its current dynamical regime to one in which there are significant signal fluctuations. In silico treatments of neural activity are an important tool for the understanding of how the healthy brain can maintain stability, as well as of how pathology can lead to seizures. The hope is that, contained within the mathematical foundations of such treatments, there lie potential strategies for mitigating instabilities, e.g. via external stimulation. Here, we demonstrate that the dynamic causal modelling neuronal state equation generalises to a Fokker-Planck formalism if one extends the framework to model the ways in which activity propagates along the structural connections of neural systems. Using the Jacobian of this generalised state equation, we show that an initially unstable system can be rendered stable via a reduction in diffusivity-i.e., by lowering the rate at which neuronal fluctuations disperse to neighbouring regions. We show, for neural systems prone to epileptic seizures, that such a reduction in diffusivity can be achieved via external stimulation. Specifically, we show that this stimulation should be applied in such a way as to temporarily mirror the activity profile of a pathological region in its functionally connected areas. This counter-intuitive method is intended to be used pre-emptively-i.e., in order to mitigate the effects of the seizure, or ideally even prevent it from occurring in the first place. We offer proof of principle using simulations based on functional neuroimaging data collected from patients with idiopathic generalised epilepsy, in which we successfully suppress pathological activity in a distinct sub-network prior to seizure onset. Our hope is that this technique can form the basis for future real-time monitoring and intervention devices that are capable of treating epilepsy in a non-invasive manner.


Asunto(s)
Epilepsia Generalizada/fisiopatología , Red Nerviosa/fisiología , Convulsiones/fisiopatología , Encéfalo/fisiopatología , Estudios de Casos y Controles , Electroencefalografía/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Modelos Estadísticos
18.
Front Neurol ; 11: 575075, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193023

RESUMEN

It has long been acknowledged that memory changes over the course of one's life, irrespective of diseases like dementia. Approaches to mitigate these changes have however yielded mixed results. Brain stimulation has been identified as one novel approach of augmenting older adult's memory. Thus far, such approaches have however been nuanced, targeting different memory domains with different methodologies. This has produced an amalgam of research with an unclear image overall. This systematic review therefore aims to clarify this landscape, evaluating, and interpreting available research findings in a coherent manner. A systematic search of relevant literature was conducted across Medline, PsycInfo, Psycarticles and the Psychology and Behavioral Sciences Collection, which uncovered 44 studies employing non-invasive electrical brain stimulation in healthy older adults. All studies were of generally good quality spanning numerous memory domains. Within these, evidence was found for non-invasive brain stimulation augmenting working, episodic, associative, semantic, and procedural memory, with the first three domains having the greatest evidence base. Key sites for stimulation included the left dorsolateral prefrontal cortex (DLPFC), temporoparietal region, and primary motor cortex, with transcranial direct current stimulation (tDCS) holding the greatest literature base. Inconsistencies within the literature are highlighted and interpreted, however this discussion was constrained by potential confounding variables within the literature, a risk of bias, and challenges defining research aims and results. Non-invasive brain stimulation often did however have a positive and predictable impact on older adult's memory, and thus warrants further research to better understand these effects.

19.
PLoS One ; 15(10): e0240907, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33120406

RESUMEN

Glucose metabolism is pivotal for energy and neurotransmitter synthesis and homeostasis, particularly in Glutamate and GABA systems. In turn, the stringent control of inhibitory/excitatory tonus is known to be relevant in neuropsychiatric conditions. Glutamatergic neurotransmission dominates excitatory synaptic functions and is involved in plasticity and excitotoxicity. GABAergic neurochemistry underlies inhibition and predicts impaired psychophysical function in diabetes. It has also been associated with cognitive decline in people with diabetes. Still, the relation between metabolic homeostasis and neurotransmission remains elusive. Two 3T proton MR spectroscopy studies were independently conducted in the occipital cortex to provide insight into inhibitory/excitatory homeostasis (GABA/Glutamate) and to evaluate the impact of chronic metabolic control on the levels and regulation (as assessed by regression slopes) of the two main neurotransmitters of the CNS in type 2 diabetes (T2DM) and type 1 diabetes (T1DM). Compared to controls, participants with T2DM showed significantly lower Glutamate, and also GABA. Nevertheless, higher levels of GABA/Glx (Glutamate+Glutamine), and lower levels of Glutamate were associated with poor metabolic control in participants with T2DM. Importantly, the relationship between GABA/Glx and HbA1c found in T2DM supports a relationship between inhibitory/excitatory balance and metabolic control. Interestingly, this neurometabolic profile was undetected in T1DM. In this condition we found strong evidence for alterations in MRS surrogate measures of neuroinflammation (myo-Inositol), positively related to chronic metabolic control. Our results suggest a role for Glutamate as a global marker of T2DM and a sensitive marker of glycemic status. GABA/Glx may provide a signature of cortical metabolic state in poorly controlled patients as assessed by HbA1c levels, which indicate long-term blood Glucose control. These findings are consistent with an interplay between abnormal neurotransmission and metabolic control in particular in type 2 diabetes thereby revealing dissimilar contributions to the pathophysiology of neural dysfunction in both types of diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ácido Glutámico/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Anciano , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Femenino , Glucosa/metabolismo , Hemoglobina Glucada/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Neurotransmisores/genética , Neurotransmisores/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Transmisión Sináptica/genética , Ácido gamma-Aminobutírico/genética
20.
Hum Brain Mapp ; 41(17): 5057-5077, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32845058

RESUMEN

There are conflicting findings regarding brain regions and networks underpinning creativity, with divergent thinking tasks commonly used to study this. A handful of meta-analyses have attempted to synthesise findings on neural mechanisms of divergent thinking. With the rapid proliferation of research and recent developments in fMRI meta-analysis approaches, it is timely to reassess the regions activated during divergent thinking creativity tasks. Of particular interest is examining the evidence regarding large-scale brain networks proposed to be key in divergent thinking and extending this work to consider the role of the semantic control network. Studies utilising fMRI with healthy participants completing divergent thinking tasks were systematically identified, with 20 studies meeting the criteria. Activation Likelihood Estimation was then used to integrate the neuroimaging results across studies. This revealed four clusters: the left inferior parietal lobe; the left inferior frontal and precentral gyrus; the superior and medial frontal gyrus and the right cerebellum. These regions are key in the semantic network, important for flexible retrieval of stored knowledge, highlighting the role of this network in divergent thinking.


Asunto(s)
Mapeo Encefálico , Cerebelo/fisiología , Corteza Cerebral/fisiología , Imagen por Resonancia Magnética , Red Nerviosa/fisiología , Pensamiento/fisiología , Mapeo Encefálico/estadística & datos numéricos , Cerebelo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Creatividad , Humanos , Funciones de Verosimilitud , Imagen por Resonancia Magnética/estadística & datos numéricos , Red Nerviosa/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...