Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nucl Med ; 65(8): 1293-1300, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960711

RESUMEN

Despite the recent advances in understanding the mechanisms of olfaction, no tools are currently available to noninvasively identify loss of smell. Because of the substantial increase in patients presenting with coronavirus disease 2019-related loss of smell, the pandemic has highlighted the urgent need to develop quantitative methods. Methods: Our group investigated the use of a novel fluorescent probe named Tsp1a-IR800P as a tool to diagnose loss of smell. Tsp1a-IR800P targets sodium channel 1.7, which plays a critical role in olfaction by aiding the signal propagation to the olfactory bulb. Results: Intuitively, we have identified that conditions leading to loss of smell, including chronic inflammation and coronavirus disease 2019, correlate with the downregulation of sodium channel 1.7 expression in the olfactory epithelium, both at the transcript and at the protein levels. We demonstrated that lower Tsp1a-IR800P fluorescence emissions significantly correlate with loss of smell in live animals-thus representing a potential tool for its semiquantitative assessment. Currently available methods rely on delayed subjective behavioral studies. Conclusion: This method could aid in significantly improving preclinical and clinical studies by providing a way to objectively diagnose loss of smell and therefore aid the development of therapeutic interventions.


Asunto(s)
Trastornos del Olfato , Trastornos del Olfato/diagnóstico por imagen , Animales , Humanos , Imagen Óptica/métodos , Olfato , Colorantes Fluorescentes/química , Ratones , COVID-19/diagnóstico por imagen , Masculino
2.
J Nucl Med ; 65(4): 580-585, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38485271

RESUMEN

Aberrantly expressed glycans on mucins such as mucin-16 (MUC16) are implicated in the biology that promotes ovarian cancer (OC) malignancy. Here, we investigated the theranostic potential of a humanized antibody, huAR9.6, targeting fully glycosylated and hypoglycosylated MUC16 isoforms. Methods: In vitro and in vivo targeting of the diagnostic radiotracer [89Zr]Zr-DFO-huAR9.6 was investigated via binding experiments, immuno-PET imaging, and biodistribution studies on OC mouse models. Ovarian xenografts were used to determine the safety and efficacy of the therapeutic version, [177Lu]Lu-CHX-A″-DTPA-huAR9.6. Results: In vivo uptake of [89Zr]Zr-DFO-huAR9.6 supported in vitro-determined expression levels: high uptake in OVCAR3 and OVCAR4 tumors, low uptake in OVCAR5 tumors, and no uptake in OVCAR8 tumors. Accordingly, [177Lu]Lu-CHX-A″-DTPA-huAR9.6 displayed strong antitumor effects in the OVCAR3 model and improved overall survival in the OVCAR3 and OVCAR5 models in comparison to the saline control. Hematologic toxicity was transient in both models. Conclusion: PET imaging of OC xenografts showed that [89Zr]Zr-DFO-huAR9.6 delineated MUC16 expression levels, which correlated with in vitro results. Additionally, we showed that [177Lu]Lu-CHX-A″-DTPA-huAR9.6 displayed strong antitumor effects in highly MUC16-expressing tumors. These findings demonstrate great potential for 89Zr- and 177Lu-labeled huAR9.6 as theranostic tools for the diagnosis and treatment of OC.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Antígeno Ca-125 , Mucinas , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , Apoptosis , Antígeno Ca-125/inmunología , Línea Celular Tumoral , Proteínas de la Membrana/inmunología , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/terapia , Ácido Pentético , Medicina de Precisión , Distribución Tisular , Anticuerpos Monoclonales Humanizados/uso terapéutico , Mucinas/inmunología
3.
ACS Omega ; 8(25): 22486-22495, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37396228

RESUMEN

Multiple myeloma (MM) is the second most prevalent hematological malignancy. It remains incurable despite the availability of novel therapeutic approaches, marking an urgent need for new agents for noninvasive targeted imaging of MM lesions. CD38 has proven to be an excellent biomarker due to its high expression in aberrant lymphoid and myeloid cells relative to normal cell populations. Using isatuximab (Sanofi), the latest FDA-approved CD38-targeting antibody, we have developed Zirconium-89(89Zr)-labeled isatuximab as a novel immunoPET tracer for the in vivo delineation of MM and evaluated the extension of its applicability to lymphomas. In vitro studies validated the high binding affinity and specificity of 89Zr-DFO-isatuximab for CD38. PET imaging demonstrated the high performance of 89Zr-DFO-isatuximab as a targeted imaging agent to delineate tumor burden in disseminated models of MM and Burkitt's lymphoma. Ex vivo biodistribution studies confirmed that high accumulations of the tracer in bone marrow and bone skeleton correspond to specific disease lesions as they are reduced to background in blocking and healthy controls. This work demonstrates the promise of 89Zr-DFO-isatuximab as an immunoPET tracer for CD38-targeted imaging of MM and certain lymphomas. More importantly, its potential as an alternative to 89Zr-DFO-daratumumab holds great clinical relevance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA