Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 74(15): 6741-7, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10888612

RESUMEN

Chemokines are involved in recruitment and activation of hematopoietic cells at sites of infection and inflammation. The M3 gene of gammaHV68, a gamma-2 herpesvirus that infects and establishes a lifelong latent infection and chronic vasculitis in mice, encodes an abundant secreted protein during productive infection. The M3 gene is located in a region of the genome that is transcribed during latency. We report here that the M3 protein is a high-affinity broad-spectrum chemokine scavenger. The M3 protein bound the CC chemokines human regulated upon activation of normal T-cell expressed and secreted (RANTES), murine macrophage inflammatory protein 1alpha (MIP-1alpha), and murine monocyte chemoattractant protein 1 (MCP-1), as well as the human CXC chemokine interleukin-8, the murine C chemokine lymphotactin, and the murine CX(3)C chemokine fractalkine with high affinity (K(d) = 1. 6 to 18.7 nM). M3 protein chemokine binding was selective, since the protein did not bind seven other CXC chemokines (K(d) > 1 microM). Furthermore, the M3 protein abolished calcium signaling in response to murine MIP-1alpha and murine MCP-1 and not to murine KC or human stromal cell-derived factor 1 (SDF-1), consistent with the binding data. The M3 protein was also capable of blocking the function of human CC and CXC chemokines, indicating the potential for therapeutic applications. Since the M3 protein lacks homology to known chemokines, chemokine receptors, or chemokine binding proteins, these studies suggest a novel herpesvirus mechanism of immune evasion.


Asunto(s)
Quimiocinas CX3C , Quimiocinas C , Quimiocinas/metabolismo , Gammaherpesvirinae/metabolismo , Proteínas Virales/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Quimiocina CX3CL1 , Quimiocinas CC/metabolismo , Quimiocinas CXC/metabolismo , Gammaherpesvirinae/genética , Humanos , Linfocinas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Sialoglicoproteínas/metabolismo , Proteínas Virales/genética , Proteínas Virales/farmacología
2.
J Virol ; 73(6): 4651-61, 1999 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10233924

RESUMEN

The dynamics of the establishment of, and reactivation from, gammaherpesviruses latency has not been quantitatively analyzed in the natural host. Gammaherpesvirus 68 (gammaHV68) is a murine gammaherpesvirus genetically related to primate gammaherpesviruses that establishes a latent infection in infected mice. We used limiting dilution reactivation (frequency of cells reactivating gammaHV68 in vitro) and limiting dilution PCR (frequency of cells carrying gammaHV68 genome) assays to compare gammaHV68 latency in normal (C57BL/6) and B-cell-deficient (MuMT) mice. After intraperitoneal (i.p.) inoculation, latent gammaHV68 was detected in the spleen, bone marrow, and peritoneal cells. Both B-cell-deficient and C57BL/6 mice established latent infection in peritoneal cells after either i.p. or intranasal (i.n.) inoculation. In contrast, establishment of splenic latency was less efficient in B-cell-deficient than in C57BL/6 mice after i.n. inoculation. Analysis of reactivation efficiency (reactivation frequency compared to frequency of cells carrying gammaHV68 genome) revealed that (i) regardless of route or mouse strain, splenic cells reactivated gammaHV68 less efficiently than peritoneal cells, (ii) the frequency of cells carrying gammaHV68 genome was generally comparable over the course of infection between C57BL/6 and B-cell-deficient mice, (iii) between 28 and 250 days after infection, cells from B-cell-deficient mice reactivated gammaHV68 10- to 100-fold more efficiently than cells from C57BL/6 mice, (iv) at 7 weeks postinfection, B-cell-deficient mice had more genome-positive peritoneal cells than C57BL/6 mice, and (v) mixing cells (ratio of 3 to 1) that reactivated inefficiently with cells that reactivated efficiently did not significantly decrease reactivation efficiency. Consistent with a failure to normally regulate chronic gammaHV68 infection, the majority of infected B-cell-deficient mice died between 100 and 200 days postinfection. We conclude that (i) B cells are not required for establishment of gammaHV68 latency, (ii) there are organ-specific differences in the efficiency of gammaHV68 reactivation, (iii) B cells play a crucial role in regulating reactivation of gammaHV68 from latency, and (iv) B cells are important for controlling chronic gammaHV68 infection.


Asunto(s)
Linfocitos B/fisiología , Gammaherpesvirinae/fisiología , Latencia del Virus , Animales , Gammaherpesvirinae/genética , Genoma Viral , Infecciones por Herpesviridae/virología , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Peritoneo/virología , Especificidad de la Especie , Bazo/virología , Activación Viral
3.
J Virol ; 73(6): 5110-22, 1999 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10233974

RESUMEN

Several gammaherpesviruses contain open reading frames encoding proteins homologous to mammalian D-type cyclins. In this study, we analyzed the expression and function of the murine gammaherpesvirus 68 (gammaHV68) viral cyclin (v-cyclin). The gammaHV68 v-cyclin gene was expressed in lytically infected fibroblasts as a leaky-late mRNA of approximately 0.9 kb encoding a protein of approximately 25 kDa. To evaluate the effect of the gammaHV68 v-cyclin on cell cycle progression in primary lymphocytes and to determine if the gammaHV68 v-cyclin gene is an oncogene, we generated transgenic mice by using the lck proximal promoter to express the gammaHV68 v-cyclin in early T cells. Expression of the gammaHV68 v-cyclin significantly increased the number of thymocytes in cell culture, as determined by measuring both DNA content and incorporation of 5-bromo-2-deoxyuridine following in vivo pulse-labeling. Expression of the gammaHV68 v-cyclin interfered with normal thymocyte maturation, as shown by increased numbers of CD4(+) CD8(+) double-positive thymocytes and decreased numbers of CD4(+) or CD8(+) single-positive and T-cell-receptor-bright thymocytes and splenocytes in transgenic mice. Despite increased numbers of cycling thymocytes, gammaHV68-v-cyclin-transgenic mice did not have proportionately increased thymocyte numbers, and staining by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling demonstrated increased apoptosis in the thymi of v-cyclin-transgenic mice. Fifteen of 38 gammaHV68-v-cyclin-transgenic mice developed high-grade lymphoblastic lymphoma between 3 and 12 months of age. We conclude that (i) the gammaHV68 v-cyclin is expressed as a leaky-late gene in lytically infected cells, (ii) expression of the gammaHV68 v-cyclin in thymocytes promotes cell cycle progression and inhibits normal T-cell differentiation, and (iii) the gammaHV68 v-cyclin gene is an oncogene.


Asunto(s)
Ciclinas/genética , Gammaherpesvirinae/genética , Oncogenes , Animales , Apoptosis , Ciclo Celular , Ciclinas/biosíntesis , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/genética , Linfoma/etiología , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Conejos , Receptores de Antígenos de Linfocitos T alfa-beta/análisis , Linfocitos T/fisiología , Proteínas Virales
4.
J Virol ; 73(5): 3682-91, 1999 May.
Artículo en Inglés | MEDLINE | ID: mdl-10196260

RESUMEN

A viral mRNA of the late kinetic class expressed by murine cytomegalovirus (MCMV) contains an open reading frame (ORF) whose predicted protein, designated MCK-1, has homology to beta chemokines (M. R. MacDonald, X.-Y. Li, and H. W. Virgin IV, J. Virol. 71:1671-1678, 1997). The present study analyzed further the structure of the transcript in infected fibroblast cells. A splicing event removed the MCK-1 stop codon, bringing a downstream ORF into frame with the chemokine homolog and demonstrating that the MCK-1 ORF was an exon of a larger gene. The predicted 31.4-kDa protein, designated MCK-2, contains a putative amino-terminal signal sequence and a beta chemokine domain, followed by a carboxyl-terminal domain without significant homology to known proteins. Quantitative analysis of mRNA forms in MCMV-infected fibroblast cells at late times after infection indicated that the viral chemokine RNA was predominantly spliced. There was no evidence for expression of RNA encoding either MCK-1 or MCK-2 at immediate early or early times after infection with MCMV. Monoclonal antibodies generated against bacterially expressed MCK-2 recognized multiple proteins in the range of approximately 30 to approximately 45 kDa in Western blot analysis of MCK-2 expressed in transfected COS cells. The monoclonal antibodies immunoprecipitated a similar group of proteins in transfected COS cells metabolically labeled with radioactive cysteine. Radiolabelled protein of apparent higher molecular mass was immunoprecipitated from culture medium overlying the transfected cells, suggesting that posttranslationally modified MCK-2 can be secreted. Two proteins with apparent molecular mass suggestive of posttranslational modification were detected by Western blot analysis of cells harvested at late times after infection with MCMV. These studies show that MCMV encodes and expresses a beta chemokine homolog with a novel predicted structure.


Asunto(s)
Quimiocinas CC/genética , Muromegalovirus/genética , Empalme del ARN , ARN Viral , Secuencia de Aminoácidos , Animales , Asparagina , Células COS , Línea Celular , Células Eucariotas , Fibroblastos/metabolismo , Fibroblastos/virología , Ratones , Datos de Secuencia Molecular , Polisacáridos , Procesamiento Proteico-Postraduccional , ARN Mensajero , Factores de Tiempo
5.
J Virol ; 73(4): 3273-83, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10074181

RESUMEN

B cells have previously been identified as the major hematopoietic cell type harboring latent gammaherpesvirus 68 (gammaHV68) (N. P. Sunil-Chandra, S. Efstathiou, and A. A. Nash, J. Gen. Virol. 73:3275-3279, 1992). However, we have shown that gammaHV68 efficiently establishes latency in B-cell-deficient mice (K. E. Weck, M. L. Barkon, L. I. Yoo, S. H. Speck, and H. W. Virgin, J. Virol. 70:6775-6780, 1996), demonstrating that B cells are not required for gammaHV68 latency. To understand this dichotomy, we determined whether hematopoietic cell types, in addition to B cells, carry latent gammaHV68. We observed a high frequency of cells that reactivate latent gammaHV68 in peritoneal exudate cells (PECs) derived from both B-cell-deficient and normal C57BL/6 mice. PECs were composed primarily of macrophages in B-cell-deficient mice and of macrophages plus B cells in normal C57BL/6 mice. To determine which cells in PECs from C57BL/6 mice carry latent gammaHV68, we developed a limiting-dilution PCR assay to quantitate the frequency of cells carrying the gammaHV68 genome in fluorescence-activated cell sorter-purified cell populations. We also quantitated the contribution of individual cell populations to the total frequency of cells carrying latent gammaHV68. At early times after infection, the frequency of PECs that reactivated gammaHV68 correlated very closely with the frequency of PECs carrying the gammaHV68 genome, validating measurement of the frequency of viral-genome-positive cells as a measure of latency in this cell population. F4/80-positive macrophage-enriched, lymphocyte-depleted PECs harbored most of the gammaHV68 genome and efficiently reactivated gammaHV68, while CD19-positive, B-cell-enriched PECs harbored about a 10-fold lower frequency of gammaHV68 genome-positive cells. CD4-positive, T-cell-enriched PECs contained only a very low frequency of gammaHV68 genome-positive cells, consistent with previous analyses indicating that T cells are not a reservoir for gammaHV68 latency (N. P. Sunil-Chandra, S. Efstathiou, and A. A. Nash, J. Gen. Virol. 73:3275-3279, 1992). Since macrophages are bone marrow derived, we determined whether elicitation of a large inflammatory response in the peritoneum would recruit additional latent cells into the peritoneum. Thioglycolate inoculation increased the total number of PECs by about 20-fold but did not affect the frequency of cells that reactivate gammaHV68, consistent with a bone marrow reservoir for latent gammaHV68. These experiments demonstrate gammaHV68 latency in two different hematopoietic cell types, F4/80-positive macrophages and CD19-positive B cells, and argue for a bone marrow reservoir for latent gammaHV68.


Asunto(s)
Gammaherpesvirinae/fisiología , Macrófagos Peritoneales/virología , Latencia del Virus/fisiología , Animales , Antígenos CD , Genoma Viral , Inmunofenotipificación , Ratones , Ratones Endogámicos C57BL
6.
J Virol ; 70(10): 6775-80, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8794315

RESUMEN

Murine gammaherpesvirus 68 (gamma HV-68; also referred to as MHV-68) is a gammaherpesvirus which infects murid rodents. Previous studies showed that CD8 T cells are important for controlling gamma HV-68 replication during the first 2 weeks of infection and suggested a role for B cells in latent or persistent gamma HV-68 infection. To further define the importance of B cells and CD8 T cells during acute and chronic gamma HV-68 infection, we examined splenic infection in mice with null mutations in the transmembrane domain of the mu-heavy-chain constant region (MuMT; B-cell and antibody deficient) or in the beta2-microglobulin gene (beta2 -/-; CD8 deficient). Immunocompetent mice infected intraperitoneally with gamma HV-68 demonstrated peak splenic titers 9 to 10 days postinfection, cleared infectious virus 15 to 20 days postinfection, and harbored low levels of latent virus at 6 weeks postinfection. Beta2-/- mice showed peak splenic gamma HV-68 titers similar to those of normal mice but were unable to clear infectious virus completely from the spleen, demonstrating persistent infectious virus 6 weeks postinfection. These data indicate that CD8 T cells are important for clearing infectious gamma HV-68 from the spleen. Infected MuMT mice did not demonstrate detectable infectious gamma HV-68 in the spleen at any time after infection, indicating that mature B lymphocytes are necessary for acute splenic infection by gamma HV-68. Despite the lack of measurable acute infection, MuMT spleen cells harbored latent virus 6 weeks postinfection at a level about 100-fold higher than that in normal mice. These data demonstrate establishment of latency by a herpesvirus in an organ in the absence of acute viral replication in that organ. In addition, they demonstrate that gamma HV-68 can establish latency in a cell type other than mature B lymphocytes.


Asunto(s)
Linfocitos B/inmunología , Gammaherpesvirinae/fisiología , Infecciones por Herpesviridae/inmunología , Bazo/virología , Activación Viral , Latencia del Virus , Enfermedad Aguda , Animales , Linfocitos B/patología , Diferenciación Celular , Ratones , Bazo/inmunología , Bazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...