Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(9): e0274204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36074780

RESUMEN

The recently discovered insecticidal protein Mpp75Aa1.1 from Brevibacillus laterosporus is a member of the ETX_MTX family of beta-pore forming proteins (ß-PFPs) expressed in genetically modified (GM) maize to control western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte). In this manuscript, bioinformatic analysis establishes that although Mpp75Aa1.1 shares varying degrees of similarity to members of the ETX_MTX2 protein family, it is unlikely to have any allergenic, toxic, or otherwise adverse biological effects. The safety of Mpp75Aa1.1 is further supported by a weight of evidence approach including evaluation of the history of safe use (HOSU) of ETX_MTX2 proteins and Breviballus laterosporus. Comparisons between purified Mpp75Aa1.1 protein and a poly-histidine-tagged (His-tagged) variant of the Mpp75Aa1.1 protein demonstrate that both forms of the protein are heat labile at temperatures at or above 55°C, degraded by gastrointestinal proteases within 0.5 min, and have no adverse effects in acute mouse oral toxicity studies at a dose level of 1920 or 2120 mg/kg body weight. These results support the use of His-tagged proteins as suitable surrogates for assessing the safety of their non-tagged parent proteins. Taken together, we report that Mpp75Aa1.1 is the first ETX-MTX2 insecticidal protein from B. laterosporus and displays a similar safety profile as typical Cry proteins from Bacillus thuringiensis.


Asunto(s)
Bacillus thuringiensis , Escarabajos , Insecticidas , Animales , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/metabolismo , Brevibacillus , Escarabajos/genética , Endotoxinas/metabolismo , Insecticidas/farmacología , Larva/metabolismo , Ratones , Control Biológico de Vectores/métodos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Zea mays/genética , Zea mays/metabolismo
2.
Regul Toxicol Pharmacol ; 131: 105160, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35311659

RESUMEN

Rodent cancer bioassays have been long-required studies for regulatory assessment of human cancer hazard and risk. These studies use hundreds of animals, are resource intensive, and certain aspects of these studies have limited human relevance. The past 10 years have seen an exponential growth of new technologies with the potential to effectively evaluate human cancer hazard and risk while reducing, refining, or replacing animal use. To streamline and facilitate uptake of new technologies, a workgroup comprised of scientists from government, academia, non-governmental organizations, and industry stakeholders developed a framework for waiver rationales of rodent cancer bioassays for consideration in agrochemical safety assessment. The workgroup used an iterative approach, incorporating regulatory agency feedback, and identifying critical information to be considered in a risk assessment-based weight of evidence determination of the need for rodent cancer bioassays. The reporting framework described herein was developed to support a chronic toxicity and carcinogenicity study waiver rationale, which includes information on use pattern(s), exposure scenario(s), pesticidal mode-of-action, physicochemical properties, metabolism, toxicokinetics, toxicological data including mechanistic data, and chemical read-across from similar registered pesticides. The framework could also be applied to endpoints other than chronic toxicity and carcinogenicity, and for chemicals other than agrochemicals.


Asunto(s)
Neoplasias , Plaguicidas , Agroquímicos/toxicidad , Animales , Bioensayo , Pruebas de Carcinogenicidad , Plaguicidas/toxicidad , Medición de Riesgo , Roedores
3.
Oncotarget ; 7(52): 87064-87080, 2016 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-27894085

RESUMEN

A hallmark of cancer cells is the ability to evade the growth inhibitory/pro-apoptotic action of physiological all-trans retinoic acid (RA) signal, the bioactive derivative of Vitamin A. However, as we and others reported, RA can also promote cancer cell growth and invasion. Here we show that anticancer and cancer-promoting RA actions in breast cancer have roots in a mechanism of mammary epithelial cell morphogenesis that involves both transcriptional (epigenetic) and non-transcriptional RARα (RARA) functions. We found that the mammary epithelial cell-context specific degree of functionality of the RARA transcriptional (epigenetic) component of this mechanism, by tuning the effects of the non-transcriptional RARA component, determines different cell fate decisions during mammary morphogenesis. Indeed, factors that hamper the RARA epigenetic function make physiological RA drive aberrant morphogenesis via non-transcriptional RARA, thus leading to cell transformation. Remarkably, also the cell context-specific degree of functionality of the RARA epigenetic component retained by breast cancer cells is critical to determine cell fate decisions in response to physiological as well as supraphysiological RA variation. Overall this study supports the proof of principle that the epigenetic functional plasticity of the mammary epithelial cell RARA mechanism, which is essential for normal morphogenetic processes, is necessary to deter breast cancer onset/progression consequent to the insidious action of physiological RA.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Mama/patología , Epigénesis Genética , Receptor alfa de Ácido Retinoico/genética , Tretinoina/farmacología , Neoplasias de la Mama/inducido químicamente , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Epiteliales/fisiología , Femenino , Humanos , Morfogénesis , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasas/fisiología
4.
Regul Toxicol Pharmacol ; 81: 407-420, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27693708

RESUMEN

Agrochemical formulations have been underrepresented in validation efforts for implementing alternative eye irritation approaches but represent a significant opportunity to reduce animal testing. This study assesses the utility of the neutral red release assay (NRR) and EpiOcular™ assay (EO) for predicting the eye irritation potential of 64 agrochemical formulations relative to Draize data. In the NRR, formulations with an NRR50 value ≤ 50 mg/mL were categorized as UN GHS Cat 1 and those >250 mg/mL were classified as UN GHS Non Classified (NC). The accuracy, sensitivity, and specificity were 78, 85 and 76% and 73, 85 and 61% for identifying UN GHS 1 and NC formulations, respectively. Specificity was poor for formulations with NRR50 > 50 to ≤250 mg/mL. The EO (ET-40 method) was explored to differentiate formulations that were UN GHS 1/2 and UN GHS NC. The EO resulted in accuracy, sensitivity, and specificity of 65%, 58% and 75% for identifying UN GHS NC formulations. To improve the overall performance, the assays were implemented using a tiered-approach where the NRR was run as a first-tier followed by the EO. The tiered-approach resulted in improved accuracy (75%) and balanced sensitivity (73%) and specificity (77%) for distinguishing between irritating and non-irritating agrochemical formulations.


Asunto(s)
Agroquímicos/toxicidad , Alternativas a las Pruebas en Animales , Ojo/efectos de los fármacos , Irritantes/toxicidad , Células 3T3 , Agroquímicos/administración & dosificación , Animales , Células Cultivadas , Irritantes/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Rojo Neutro , Pruebas de Toxicidad
5.
Regul Toxicol Pharmacol ; 72(2): 350-60, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25981449

RESUMEN

Assessment of skin sensitization potential is an important component of the safety evaluation process for agrochemical products. Recently, non-animal approaches including the KeratinoSens™ assay have been developed for predicting skin sensitization potential. Assessing the utility of the KeratinoSens™ assay for use with multi-component mixtures such as agrochemical formulations has not been previously evaluated and is a significant need. This study was undertaken to evaluate the KeratinoSens™ assay prediction potential for agrochemical formulations. The assay was conducted for 8 agrochemical active ingredients (AIs) including 3 sensitizers (acetochlor, meptyldinocap, triclopyr), 5 non-sensitizers (aminopyralid, clopyralid, florasulam, methoxyfenozide, oxyfluorfen) and 10 formulations for which in vivo sensitization data were available. The KeratinoSens™ correctly predicted the sensitization potential of all the AIs. For agrochemical formulations it was necessary to modify the standard assay procedure whereby the formulation was assumed to have a common molecular weight. The resultant approach correctly predicted the sensitization potential for 3 of 4 sensitizing formulations and all 6 non-sensitizing formulations when compared to in vivo data. Only the meptyldinocap-containing formulation was misclassified, as a result of high cytotoxicity. These results demonstrate the promising utility of the KeratinoSens™ assay for evaluating the skin sensitization potential of agrochemical AIs and formulations.


Asunto(s)
Agroquímicos/toxicidad , Bioensayo , Haptenos/toxicidad , Alternativas a las Pruebas en Animales , Línea Celular , Dermatitis Alérgica por Contacto , Humanos
6.
Environ Mol Mutagen ; 55(7): 530-41, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24976023

RESUMEN

Integrated testing strategies involve the assessment of multiple endpoints within a single toxicity study and represent an important approach for reducing animal use and streamlining testing. The present study evaluated the ability to combine general, immune, and genetic toxicity endpoints into a single study. Specifically, this study evaluated the impact of sheep red blood cell (SRBC) immunization, as part of the T-cell dependent antibody response (TDAR) assay, on organ weights, micronuclei (MN) formation (bone marrow and peripheral blood), and the Comet assay response in the liver of female F344/DuCrl rats treated with cyclophosphamide (CP) a known immunosuppressive chemical and genotoxicant. For the TDAR assay, treatment with CP resulted in a dose-dependent decrease in the antibody response with a suppression of greater than 95% at the high dose. Injection with SRBC had no impact on evaluated organ weights, histopathology, hematology, and clinical chemistry parameters. Analysis of MN formation in bone marrow and peripheral blood revealed a dose-dependent increase in response to CP treatment. Injection with SRBC had no impact on the level of MN in control animals and did not alter the dose response of CP. There was a slight increase in liver DNA damage in response to CP as measured by the Comet assay; however, injection with SRBCs did not alter this endpoint. Overall these data provide strong support for the concurrent assessment of general, immune, and genetic toxicology endpoints within a single study as part of an integrated testing strategy approach.


Asunto(s)
Ensayo Cometa , Pruebas de Micronúcleos , Mutágenos/química , Pruebas de Toxicidad/métodos , Animales , Formación de Anticuerpos/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/efectos de los fármacos , Ciclofosfamida/química , Daño del ADN , Relación Dosis-Respuesta a Droga , Eritrocitos/efectos de los fármacos , Femenino , Hígado/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Ratas , Ratas Endogámicas F344 , Proyectos de Investigación , Ovinos , Linfocitos T/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...