Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 133(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37856216

RESUMEN

The G protein-coupled receptor 84 (GPR84), a medium-chain fatty acid receptor, has garnered attention because of its potential involvement in a range of metabolic conditions. However, the precise mechanisms underlying this effect remain elusive. Our study has shed light on the pivotal role of GPR84, revealing its robust expression and functional significance within brown adipose tissue (BAT). Mice lacking GPR84 exhibited increased lipid accumulation in BAT, rendering them more susceptible to cold exposure and displaying reduced BAT activity compared with their WT counterparts. Our in vitro experiments with primary brown adipocytes from GPR84-KO mice revealed diminished expression of thermogenic genes and reduced O2 consumption. Furthermore, the application of the GPR84 agonist 6-n-octylaminouracil (6-OAU) counteracted these effects, effectively reinstating the brown adipocyte activity. These compelling in vivo and in vitro findings converge to highlight mitochondrial dysfunction as the primary cause of BAT anomalies in GPR84-KO mice. The activation of GPR84 induced an increase in intracellular Ca2+ levels, which intricately influenced mitochondrial respiration. By modulating mitochondrial Ca2+ levels and respiration, GPR84 acts as a potent molecule involved in BAT activity. These findings suggest that GPR84 is a potential therapeutic target for invigorating BAT and ameliorating metabolic disorders.


Asunto(s)
Adipocitos Marrones , Calcio , Receptores Acoplados a Proteínas G , Animales , Ratones , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Calcio/metabolismo , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Termogénesis/genética , Receptores Acoplados a Proteínas G/metabolismo , Mitocondrias/metabolismo , Mitocondrias/fisiología
2.
J Clin Invest ; 132(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36066975

RESUMEN

The molecular mechanisms underlying obesity-induced increases in ß cell mass and the resulting ß cell dysfunction need to be elucidated further. Our study revealed that GPR92, expressed in islet macrophages, is modulated by dietary interventions in metabolic tissues. Therefore, we aimed to define the role of GPR92 in islet inflammation by using a high-fat diet-induced (HFD-induced) obese mouse model. GPR92-KO mice exhibited glucose intolerance and reduced insulin levels - despite the enlarged pancreatic islets - as well as increased islet macrophage content and inflammation level compared with WT mice. These results indicate that the lack of GPR92 in islet macrophages can cause ß cell dysfunction, leading to disrupted glucose homeostasis. Alternatively, stimulation with the GPR92 agonist farnesyl pyrophosphate results in the inhibition of HFD-induced islet inflammation and increased insulin secretion in WT mice, but not in GPR92-KO mice. Thus, our study suggests that GPR92 can be a potential target to alleviate ß cell dysfunction via the inhibition of islet inflammation associated with the progression of diabetes.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Obesidad/metabolismo , Islotes Pancreáticos/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Obesos , Macrófagos/metabolismo , Inflamación/metabolismo , Ratones Endogámicos C57BL
3.
Nat Metab ; 4(8): 1055-1070, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35982290

RESUMEN

Adult white adipose tissue (WAT) harbors distinct mesenchymal stromal cell subpopulations that differentially affect WAT function and plasticity. Here we unveil the cellular landscape of the perinatal epididymal WAT primordium using single-cell transcriptomics in male mice. We reveal that adipocyte precursor cells and fibro-inflammatory progenitors (FIPs) emerge as functionally distinct PDGFRß+ subpopulations within the epididymal WAT anlagen prior to adipocyte accrual. We further identify important molecular and functional differences between perinatal and adult FIPs, including differences in their pro-inflammatory response, adipogenic capacity and anti-adipogenic behavior. Notably, we find that transient overexpression of Pparg in PDGFRß+ cells only during postnatal days 0.5 to 7.5 in male mice leads to hyperplastic WAT development, durable progenitor cell reprogramming, and protection against pathologic WAT remodeling and glucose intolerance in adult-onset obesity. Thus, factors that alter the adipogenic capacity of perinatal adipose progenitors can have long-lasting effects on progenitor plasticity, tissue expandability and metabolic health into adulthood.


Asunto(s)
Adipogénesis , Tejido Adiposo Blanco , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Femenino , Masculino , Ratones , Obesidad/metabolismo , Embarazo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo
4.
Genes Dev ; 35(21-22): 1461-1474, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34620682

RESUMEN

Energy-storing white adipocytes maintain their identity by suppressing the energy-burning thermogenic gene program of brown and beige adipocytes. Here, we reveal that the protein-protein interaction between the transcriptional coregulator ZFP423 and brown fat determination factor EBF2 is essential for restraining the thermogenic phenotype of white adipose tissue (WAT). Disruption of the ZFP423-EBF2 protein interaction through CRISPR-Cas9 gene editing triggers widespread "browning" of WAT in adult mice. Mechanistically, ZFP423 recruits the NuRD corepressor complex to EBF2-bound thermogenic gene enhancers. Loss of adipocyte Zfp423 induces an EBF2 NuRD-to-BAF coregulator switch and a shift in PPARγ occupancy to thermogenic genes. This shift in PPARγ occupancy increases the antidiabetic efficacy of the PPARγ agonist rosiglitazone in obesity while diminishing the unwanted weight-gaining effect of the drug. These data indicate that ZFP423 controls EBF2 coactivator recruitment and PPARγ occupancy to determine the thermogenic plasticity of adipocytes and highlight the potential of therapeutically targeting transcriptional brakes to induce beige adipocyte biogenesis in obesity.


Asunto(s)
PPAR gamma , Termogénesis , Adipocitos Marrones/metabolismo , Adipocitos Blancos , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN , Ratones , PPAR gamma/genética , Termogénesis/genética , Factores de Transcripción
5.
Genes Dev ; 35(19-20): 1333-1338, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34531316

RESUMEN

The full array of cold-responsive cell types within white adipose tissue that drive thermogenic beige adipocyte biogenesis remains undefined. We demonstrate that acute cold challenge elicits striking transcriptomic changes specifically within DPP4+ PDGFRß+ adipocyte precursor cells, including a ß-adrenergic receptor CREB-mediated induction in the expression of the prothermogenic cytokine, Il33 Doxycycline-inducible deletion of Il33 in PDGFRß+ cells at the onset of cold exposure attenuates ILC2 accumulation and beige adipocyte accrual. These studies highlight the multifaceted roles for adipocyte progenitors and the ability of select mesenchymal subpopulations to relay neuronal signals to tissue-resident immune cells in order to regulate tissue plasticity.


Asunto(s)
Adipocitos Beige , Adipocitos Beige/metabolismo , Tejido Adiposo Blanco/metabolismo , Adrenérgicos/metabolismo , Frío , Inmunidad Innata , Linfocitos , Termogénesis/genética
6.
Nat Commun ; 12(1): 4829, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376643

RESUMEN

Plasma hyaluronan (HA) increases systemically in type 2 diabetes (T2D) and the HA synthesis inhibitor, 4-Methylumbelliferone, has been proposed to treat the disease. However, HA is also implicated in normal physiology. Therefore, we generated a Hyaluronan Synthase 2 transgenic mouse line, driven by a tet-response element promoter to understand the role of HA in systemic metabolism. To our surprise, adipocyte-specific overproduction of HA leads to smaller adipocytes and protects mice from high-fat-high-sucrose-diet-induced obesity and glucose intolerance. Adipocytes also have more free glycerol that can be released upon beta3 adrenergic stimulation. Improvements in glucose tolerance were not linked to increased plasma HA. Instead, an HA-driven systemic substrate redistribution and adipose tissue-liver crosstalk contributes to the systemic glucose improvements. In summary, we demonstrate an unexpected improvement in glucose metabolism as a consequence of HA overproduction in adipose tissue, which argues against the use of systemic HA synthesis inhibitors to treat obesity and T2D.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Dioxoles/farmacología , Glucosa/metabolismo , Ácido Hialurónico/metabolismo , Lipólisis/efectos de los fármacos , Adipocitos/citología , Tejido Adiposo/citología , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Femenino , Intolerancia a la Glucosa/metabolismo , Homeostasis , Humanos , Hipoglucemiantes/farmacología , Masculino , Ratones , Ratones Transgénicos , Obesidad/etiología , Obesidad/metabolismo
7.
Elife ; 102021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33904399

RESUMEN

Adiponectin is essential for the regulation of tissue substrate utilization and systemic insulin sensitivity. Clinical studies have suggested a positive association of circulating adiponectin with healthspan and lifespan. However, the direct effects of adiponectin on promoting healthspan and lifespan remain unexplored. Here, we are using an adiponectin null mouse and a transgenic adiponectin overexpression model. We directly assessed the effects of circulating adiponectin on the aging process and found that adiponectin null mice display exacerbated age-related glucose and lipid metabolism disorders. Moreover, adiponectin null mice have a significantly shortened lifespan on both chow and high-fat diet. In contrast, a transgenic mouse model with elevated circulating adiponectin levels has a dramatically improved systemic insulin sensitivity, reduced age-related tissue inflammation and fibrosis, and a prolonged healthspan and median lifespan. These results support a role of adiponectin as an essential regulator for healthspan and lifespan.


Asunto(s)
Adiponectina/fisiología , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Femenino , Glucosa/metabolismo , Homeostasis , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos , Longevidad/fisiología , Masculino , Ratones , Ratones Transgénicos
8.
Cell Stem Cell ; 28(4): 685-701.e7, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33539723

RESUMEN

Adipose precursor cells (APCs) exhibit regional variation in response to obesity, for unclear reasons. Here, we reveal that HIFα-induced PDGFRß signaling within murine white adipose tissue (WAT) PDGFRß+ cells drives inhibitory serine 112 (S112) phosphorylation of PPARγ, the master regulator of adipogenesis. Levels of PPARγ S112 phosphorylation in WAT PDGFRß+ cells are depot dependent, with levels of PPARγ phosphorylation in PDGFRß+ cells inversely correlating with their capacity for adipogenesis upon high-fat-diet feeding. HIFα suppression in PDGFRß+ progenitors promotes subcutaneous and intra-abdominal adipogenesis, healthy WAT remodeling, and improved metabolic health in obesity. These metabolic benefits are mimicked by treatment of obese mice with the PDGFR antagonist Imatinib, which promotes adipocyte hyperplasia and glucose tolerance in a progenitor cell PPARγ-dependent manner. Our studies unveil a mechanism underlying depot-specific responses of APCs to high-fat feeding and highlight the potential for APCs to be targeted pharmacologically to improve metabolic health in obesity.


Asunto(s)
Adipogénesis , Tejido Adiposo , Adipocitos , Tejido Adiposo Blanco , Animales , Dieta Alta en Grasa , Ratones , Ratones Endogámicos C57BL , Obesidad
9.
Nat Metab ; 2(11): 1332-1349, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33139957

RESUMEN

Chronic low-grade white adipose tissue (WAT) inflammation is a hallmark of metabolic syndrome in obesity. Here, we demonstrate that a subpopulation of mouse WAT perivascular (PDGFRß+) cells, termed fibro-inflammatory progenitors (FIPs), activate proinflammatory signalling cascades shortly after the onset of high-fat diet feeding and regulate proinflammatory macrophage accumulation in WAT in a TLR4-dependent manner. FIPs activation in obesity is mediated by the downregulation of zinc-finger protein 423 (ZFP423), identified here as a transcriptional corepressor of NF-κB. ZFP423 suppresses the DNA-binding capacity of the p65 subunit of NF-κB by inducing a p300-to-NuRD coregulator switch. Doxycycline-inducible expression of Zfp423 in PDGFRß+ cells suppresses inflammatory signalling in FIPs and attenuates metabolic inflammation of visceral WAT in obesity. Inducible inactivation of Zfp423 in PDGFRß+ cells increases FIP activity, exacerbates adipose macrophage accrual and promotes WAT dysfunction. These studies implicate perivascular mesenchymal cells as important regulators of chronic adipose-tissue inflammation in obesity and identify ZFP423 as a transcriptional break on NF-κB signalling.


Asunto(s)
Tejido Adiposo Blanco/patología , Macrófagos/patología , Células Madre Mesenquimatosas , Obesidad/patología , Animales , Proteínas de Unión al ADN/metabolismo , Dieta Alta en Grasa , Hipoglucemiantes/farmacología , Insulina/farmacología , Ratones , Ratones Endogámicos C57BL , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/metabolismo
10.
J Vis Exp ; (162)2020 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-32865529

RESUMEN

The stromal-vascular fraction (SVF) of white adipose tissue (WAT) is remarkably heterogeneous and consists of numerous cell types that contribute functionally to the expansion and remodeling of WAT in adulthood. A tremendous barrier to studying the implications of this cellular heterogeneity is the inability to readily isolate functionally distinct cell subpopulations from WAT SVF for in vitro and in vivo analyses. Single-cell sequencing technology has recently identified functionally distinct fibro-inflammatory and adipogenic PDGFRß+ perivascular cell subpopulations in intra-abdominal WAT depots of adult mice. Fibro-inflammatory progenitors (termed, "FIPs") are non-adipogenic collagen producing cells that can exert a pro-inflammatory phenotype. PDGFRß+ adipocyte precursor cells (APCs) are highly adipogenic both in vitro and in vivo upon cell transplantation. Here, we describe multiple methods for the isolation of these stromal cell subpopulations from murine intra-abdominal WAT depots. FIPs and APCs can be isolated by fluorescence-activated cell sorting (FACS) or by taking advantage of biotinylated antibody-based immunomagnetic bead technology. Isolated cells can be used for molecular and functional analysis. Studying the functional properties of stromal cell subpopulation in isolation will expand our current knowledge of adipose tissue remodeling under physiological or pathological conditions on the cellular level.


Asunto(s)
Grasa Abdominal/citología , Adipogénesis , Separación Celular/métodos , Células del Estroma/citología , Tejido Adiposo Blanco/citología , Animales , Citometría de Flujo , Inflamación/patología , Ratones , Células del Estroma/patología
11.
J Clin Invest ; 129(10): 4022-4031, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31573549

RESUMEN

The manner in which white adipose tissue (WAT) expands and remodels directly impacts the risk of developing metabolic syndrome in obesity. Preferential accumulation of visceral WAT is associated with increased risk for insulin resistance, whereas subcutaneous WAT expansion is protective. Moreover, pathologic WAT remodeling, typically characterized by adipocyte hypertrophy, chronic inflammation, and fibrosis, is associated with insulin resistance. Healthy WAT expansion, observed in the "metabolically healthy" obese, is generally associated with the presence of smaller and more numerous adipocytes, along with lower degrees of inflammation and fibrosis. Here, we highlight recent human and rodent studies that support the notion that the ability to recruit new fat cells through adipogenesis is a critical determinant of healthy adipose tissue distribution and remodeling in obesity. Furthermore, we discuss recent advances in our understanding of the identity of tissue-resident progenitor populations in WAT made possible through single-cell RNA sequencing analysis. A better understanding of adipose stem cell biology and adipogenesis may lead to novel strategies to uncouple obesity from metabolic disease.


Asunto(s)
Adipogénesis/fisiología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Obesidad/metabolismo , Obesidad/patología , Adipocitos Blancos/metabolismo , Adipocitos Blancos/patología , Animales , Metabolismo Energético , Humanos , Resistencia a la Insulina , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Ratones , Obesidad/complicaciones , RNA-Seq , Factores de Riesgo , Análisis de la Célula Individual , Células Madre/metabolismo , Células Madre/patología
12.
Diabetes ; 68(10): 1874-1885, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31540940

RESUMEN

Activated beige adipocytes have therapeutic potential due to their ability to improve glucose and lipid homeostasis. To date, the origin of beige adipocytes remains enigmatic. Whether beige cells arise through de novo differentiation from resident precursors or through reprogramming of mature white adipocytes has been a topic of intense discussion. Here, we offer our perspective on the natural origin of beige adipocytes in mice. In particular, we revisit recent lineage-tracing studies that shed light on this issue and offer new insight into how environmental housing temperatures early in life influence the mode of beige adipocyte biogenesis upon cold exposure later in life. We suggest a unified model in which beige adipocytes (UCP1+ multilocular cells) in rodents initially arise predominantly from progenitors (i.e., de novo beige adipogenesis) upon the first exposure to cold temperatures and then interconvert between "dormant beige" and "active beige" phenotypes (i.e., beige cell activation) upon subsequent changes in environmental temperature. Importantly, we highlight experimental considerations needed to visualize de novo adipogenesis versus beige cell activation in mice. A precise understanding of the cellular origins of beige adipocytes emanating in response to physiological and pharmacological stimuli may better inform therapeutic strategies to recruit beige adipocytes in vivo.


Asunto(s)
Adipocitos Beige/citología , Adipogénesis/fisiología , Tejido Adiposo Blanco/citología , Animales , Humanos , Termogénesis/fisiología
13.
J Clin Invest ; 129(12): 5327-5342, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31503545

RESUMEN

Dermal adipose tissue (also known as dermal white adipose tissue and herein referred to as dWAT) has been the focus of much discussion in recent years. However, dWAT remains poorly characterized. The fate of the mature dermal adipocytes and the origin of the rapidly reappearing dermal adipocytes at different stages remain unclear. Here, we isolated dermal adipocytes and characterized dermal fat at the cellular and molecular level. Together with dWAT's dynamic responses to external stimuli, we established that dermal adipocytes are a distinct class of white adipocytes with high plasticity. By combining pulse-chase lineage tracing and single-cell RNA sequencing, we observed that mature dermal adipocytes undergo dedifferentiation and redifferentiation under physiological and pathophysiological conditions. Upon various challenges, the dedifferentiated cells proliferate and redifferentiate into adipocytes. In addition, manipulation of dWAT highlighted an important role for mature dermal adipocytes for hair cycling and wound healing. Altogether, these observations unravel a surprising plasticity of dermal adipocytes and provide an explanation for the dynamic changes in dWAT mass that occur under physiological and pathophysiological conditions, and highlight the important contributions of dWAT toward maintaining skin homeostasis.


Asunto(s)
Adipocitos Blancos/citología , Desdiferenciación Celular/fisiología , Plasticidad de la Célula/fisiología , Piel/citología , Adipocitos Blancos/fisiología , Animales , Diferenciación Celular , Separación Celular , Perfilación de la Expresión Génica , Folículo Piloso/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/citología , Cicatrización de Heridas
14.
Elife ; 72018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30265241

RESUMEN

White adipose tissue (WAT) remodeling is dictated by coordinated interactions between adipocytes and resident stromal-vascular cells; however, the functional heterogeneity of adipose stromal cells has remained unresolved. We combined single-cell RNA-sequencing and FACS to identify and isolate functionally distinct subpopulations of PDGFRß+ stromal cells within visceral WAT of adult mice. LY6C- CD9- PDGFRß+ cells represent highly adipogenic visceral adipocyte precursor cells ('APCs'), whereas LY6C+ PDGFRß+ cells represent fibro-inflammatory progenitors ('FIPs'). FIPs lack adipogenic capacity, display pro-fibrogenic/pro-inflammatory phenotypes, and can exert an anti-adipogenic effect on APCs. The pro-inflammatory phenotype of PDGFRß+ cells is regulated, at least in part, by NR4A nuclear receptors. These data highlight the functional heterogeneity of visceral WAT perivascular cells, and provide insight into potential cell-cell interactions impacting adipogenesis and inflammation. These improved strategies to isolate FIPs and APCs from visceral WAT will facilitate the study of physiological WAT remodeling and mechanisms leading to metabolic dysfunction. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed.


Asunto(s)
Adipogénesis , Envejecimiento/patología , Inflamación/patología , Grasa Intraabdominal/patología , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Antígenos Ly/metabolismo , Diferenciación Celular , Separación Celular , Dieta Alta en Grasa , Femenino , Fibrosis , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Fenotipo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Células del Estroma/metabolismo , Células del Estroma/patología , Tetraspanina 29/metabolismo
15.
Plast Reconstr Surg ; 142(1): 56-65, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29878987

RESUMEN

BACKGROUND: Fat grafting has been used extensively in plastic surgery in the past two decades. Here, the authors report the retrospective comparison of patients who underwent fractionated fat injection to blend the lid-cheek junction with those who had regular fat injection. METHODS: After obtaining institutional review board approval, a retrospective review of patients who underwent lower blepharoplasty with fractionated fat injection for blending the lid-cheek junction from January of 2014 through October of 2015 was performed. The results were compared to those of lower blepharoplasty patients who did not have fractionated fat injected before January of 2014. Twelve prospectively selected patients underwent histopathologic and gene expression comparisons. RESULTS: A comparison of complications between the two groups revealed no significant differences. Furthermore, there was no significant difference between the two groups for sequelae of fractionated fat injection and regular fat injection. The gene expression analysis of the fractionated and regular fat did not show any difference between undifferentiated and differentiated cells. In addition, Oil Red O staining of the fractionated and regular fat after differentiation showed that cells from both fat groups differentiated equally well. CONCLUSIONS: Fractionated fat injection appears to be a safe addition in blending the lid-cheek junction in the five-step lower blepharoplasty. There is no fat nodule formation with injection of fractionated fat injection compared with injection of regular fat performed superficially in the tear trough area. Contrary to what has previously been shown, the presence of viable cells in fractionated fat was noted. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, III.


Asunto(s)
Blefaroplastia/métodos , Mejilla/cirugía , Grasa Subcutánea/trasplante , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Estudios Retrospectivos
16.
Cell Metab ; 28(2): 282-288.e3, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29909970

RESUMEN

Adipose tissue in the mammary gland undergoes dramatic remodeling during reproduction. Adipocytes are replaced by mammary alveolar structures during pregnancy and lactation, then reappear upon weaning. The fate of the original adipocytes during lactation and the developmental origin of the re-appearing adipocyte post involution are unclear. Here, we reveal that adipocytes in the mammary gland de-differentiate into Pdgfrα+ preadipocyte- and fibroblast-like cells during pregnancy and remain de-differentiated during lactation. Upon weaning, de-differentiated fibroblasts proliferate and re-differentiate into adipocytes. This cycle occurs over multiple pregnancies. These observations reveal the potential of terminally differentiated adipocytes to undergo repeated cycles of de-differentiation and re-differentiation in a physiological setting.


Asunto(s)
Adipocitos Blancos/metabolismo , Adipogénesis , Tejido Adiposo , Lactancia/metabolismo , Glándulas Mamarias Animales , Adipocitos Blancos/citología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Animales , Femenino , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Destete
17.
Nat Commun ; 9(1): 890, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29497032

RESUMEN

Pathologic expansion of white adipose tissue (WAT) in obesity is characterized by adipocyte hypertrophy, inflammation, and fibrosis; however, factors triggering this maladaptive remodeling are largely unknown. Here, we test the hypothesis that the potential to recruit new adipocytes from Pdgfrß+ preadipocytes determines visceral WAT health in obesity. We manipulate levels of Pparg, the master regulator of adipogenesis, in Pdgfrß+ precursors of adult mice. Increasing the adipogenic capacity of Pdgfrß+ precursors through Pparg overexpression results in healthy visceral WAT expansion in obesity and adiponectin-dependent improvements in glucose homeostasis. Loss of mural cell Pparg triggers pathologic visceral WAT expansion upon high-fat diet feeding. Moreover, the ability of the TZD class of anti-diabetic drugs to promote healthy visceral WAT remodeling is dependent on mural cell Pparg. These data highlight the protective effects of de novo visceral adipocyte differentiation in these settings, and suggest Pdgfrß+ adipocyte precursors as targets for therapeutic intervention in diabetes.


Asunto(s)
Adipocitos/citología , Adipogénesis , Grasa Intraabdominal/citología , Obesidad/fisiopatología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , Femenino , Humanos , Grasa Intraabdominal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética
18.
Elife ; 62017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28722653

RESUMEN

Visceral adiposity confers significant risk for developing metabolic disease in obesity whereas preferential expansion of subcutaneous white adipose tissue (WAT) appears protective. Unlike subcutaneous WAT, visceral WAT is resistant to adopting a protective thermogenic phenotype characterized by the accumulation of Ucp1+ beige/BRITE adipocytes (termed 'browning'). In this study, we investigated the physiological consequences of browning murine visceral WAT by selective genetic ablation of Zfp423, a transcriptional suppressor of the adipocyte thermogenic program. Zfp423 deletion in fetal visceral adipose precursors (Zfp423loxP/loxP; Wt1-Cre), or adult visceral white adipose precursors (PdgfrbrtTA; TRE-Cre; Zfp423loxP/loxP), results in the accumulation of beige-like thermogenic adipocytes within multiple visceral adipose depots. Thermogenic visceral WAT improves cold tolerance and prevents and reverses insulin resistance in obesity. These data indicate that beneficial visceral WAT browning can be engineered by directing visceral white adipocyte precursors to a thermogenic adipocyte fate, and suggest a novel strategy to combat insulin resistance in obesity.


Asunto(s)
Adipocitos Blancos/fisiología , Diferenciación Celular , Resistencia a la Insulina , Ratones Obesos , Células Madre/fisiología , Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/fisiología , Animales , Proteínas de Unión al ADN/deficiencia , Termogénesis , Factores de Transcripción/deficiencia
20.
Genes Dev ; 31(2): 127-140, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28202540

RESUMEN

The ability to maintain and expand the pool of adipocytes in adults is integral to the regulation of energy balance, tissue/stem cell homeostasis, and disease pathogenesis. For decades, our knowledge of adipocyte precursors has relied on cellular models. The identity of native adipocyte precursors has remained unclear. Recent studies have identified distinct adipocyte precursor populations that are physiologically regulated and contribute to the development, maintenance, and expansion of adipocyte pools in mice. With new tools available, the properties of adipocyte precursors can now be defined, and the regulation and function of adipose plasticity in development and physiology can be explored.


Asunto(s)
Adipocitos Marrones/citología , Adipocitos Blancos/citología , Adipogénesis , Animales , Diferenciación Celular , Humanos , Investigación/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...