Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Evol Biol ; 36(10): 1525-1538, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37776088

RESUMEN

Populations suffer two types of stochasticity: demographic stochasticity, from sampling error in offspring number, and environmental stochasticity, from temporal variation in the growth rate. By modelling evolution through phenotypic selection following an abrupt environmental change, we investigate how genetic and demographic dynamics, as well as effects on population survival of the genetic variance and of the strength of stabilizing selection, differ under the two types of stochasticity. We show that population survival probability declines sharply with stronger stabilizing selection under demographic stochasticity, but declines more continuously when environmental stochasticity is strengthened. However, the genetic variance that confers the highest population survival probability differs little under demographic and environmental stochasticity. Since the influence of demographic stochasticity is stronger when population size is smaller, a slow initial decline of genetic variance, which allows quicker evolution, is important for population persistence. In contrast, the influence of environmental stochasticity is population-size-independent, so higher initial fitness becomes important for survival under strong environmental stochasticity. The two types of stochasticity interact in a more than multiplicative way in reducing the population survival probability. Our work suggests the importance of explicitly distinguishing and measuring the forms of stochasticity during evolutionary rescue.

2.
Syst Biol ; 71(6): 1290-1306, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-35285502

RESUMEN

Morphology remains a primary source of phylogenetic information for many groups of organisms, and the only one for most fossil taxa. Organismal anatomy is not a collection of randomly assembled and independent "parts", but instead a set of dependent and hierarchically nested entities resulting from ontogeny and phylogeny. How do we make sense of these dependent and at times redundant characters? One promising approach is using ontologies-structured controlled vocabularies that summarize knowledge about different properties of anatomical entities, including developmental and structural dependencies. Here, we assess whether evolutionary patterns can explain the proximity of ontology-annotated characters within an ontology. To do so, we measure phylogenetic information across characters and evaluate if it matches the hierarchical structure given by ontological knowledge-in much the same way as across-species diversity structure is given by phylogeny. We implement an approach to evaluate the Bayesian phylogenetic information (BPI) content and phylogenetic dissonance among ontology-annotated anatomical data subsets. We applied this to data sets representing two disparate animal groups: bees (Hexapoda: Hymenoptera: Apoidea, 209 chars) and characiform fishes (Actinopterygii: Ostariophysi: Characiformes, 463 chars). For bees, we find that BPI is not substantially explained by anatomy since dissonance is often high among morphologically related anatomical entities. For fishes, we find substantial information for two clusters of anatomical entities instantiating concepts from the jaws and branchial arch bones, but among-subset information decreases and dissonance increases substantially moving to higher-level subsets in the ontology. We further applied our approach to address particular evolutionary hypotheses with an example of morphological evolution in miniature fishes. While we show that phylogenetic information does match ontology structure for some anatomical entities, additional relationships and processes, such as convergence, likely play a substantial role in explaining BPI and dissonance, and merit future investigation. Our work demonstrates how complex morphological data sets can be interrogated with ontologies by allowing one to access how information is spread hierarchically across anatomical concepts, how congruent this information is, and what sorts of processes may play a role in explaining it: phylogeny, development, or convergence. [Apidae; Bayesian phylogenetic information; Ostariophysi; Phenoscape; phylogenetic dissonance; semantic similarity.].


Asunto(s)
Artrópodos , Characiformes , Animales , Teorema de Bayes , Fósiles , Filogenia
3.
Res Policy ; 50(1): 104069, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33390628

RESUMEN

Synthesis centers are a form of scientific organization that catalyzes and supports research that integrates diverse theories, methods and data across spatial or temporal scales to increase the generality, parsimony, applicability, or empirical soundness of scientific explanations. Synthesis working groups are a distinctive form of scientific collaboration that produce consequential, high-impact publications. But no one has asked if synthesis working groups synthesize: are their publications substantially more diverse than others, and if so, in what ways and with what effect? We investigate these questions by using Latent Dirichlet Analysis to compare the topical diversity of papers published by synthesis center collaborations with that of papers in a reference corpus. Topical diversity was operationalized and measured in several ways, both to reflect aggregate diversity and to emphasize particular aspects of diversity (such as variety, evenness, and balance). Synthesis center publications have greater topical variety and evenness, but less disparity, than do papers in the reference corpus. The influence of synthesis center origins on aspects of diversity is only partly mediated by the size and heterogeneity of collaborations: when taking into account the numbers of authors, distinct institutions, and references, synthesis center origins retain a significant direct effect on diversity measures. Controlling for the size and heterogeneity of collaborative groups, synthesis center origins and diversity measures significantly influence the visibility of publications, as indicated by citation measures. We conclude by suggesting social processes within collaborations that might account for the observed effects, by inviting further exploration of what this novel textual analysis approach might reveal about interdisciplinary research, and by offering some practical implications of our results.

4.
Evolution ; 74(8): 1590-1602, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32267552

RESUMEN

The role of genetic architecture in adaptation to novel environments has received considerable attention when the source of adaptive variation is de novo mutation. Relatively less is known when the source of adaptive variation is inter- or intraspecific hybridization. We model hybridization between divergent source populations and subsequent colonization of an unoccupied novel environment using individual-based simulations to understand the influence of genetic architecture on the timing of colonization and the mode of adaptation. We find that two distinct categories of genetic architecture facilitate rapid colonization but that they do so in qualitatively different ways. For few and/or tightly linked loci, the mode of adaptation is via the recovery of adaptive parental genotypes. With many unlinked loci, the mode of adaptation is via the generation of novel hybrid genotypes. The first category results in the shortest colonization lag phases across the widest range of parameter space, but further adaptation is mutation limited. The second category takes longer and is more sensitive to genetic variance and dispersal rate, but can facilitate adaptation to environmental conditions that exceed the tolerance of parental populations. These findings have implications for understanding the origins of biological invasions and the success of hybrid populations.


Asunto(s)
Hibridación Genética , Especies Introducidas , Modelos Genéticos , Epistasis Genética , Ligamiento Genético
5.
PLoS One ; 15(3): e0230281, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210449

RESUMEN

Despite the increase in the number of journals issuing data policies requiring authors to make data underlying reporting findings publicly available, authors do not always do so, and when they do, the data do not always meet standards of quality that allow others to verify or extend published results. This phenomenon suggests the need to consider the effectiveness of journal data policies to present and articulate transparency requirements, and how well they facilitate (or hinder) authors' ability to produce and provide access to data, code, and associated materials that meet quality standards for computational reproducibility. This article describes the results of a research study that examined the ability of journal-based data policies to: 1) effectively communicate transparency requirements to authors, and 2) enable authors to successfully meet policy requirements. To do this, we conducted a mixed-methods study that examined individual data policies alongside editors' and authors' interpretation of policy requirements to answer the following research questions. Survey responses from authors and editors along with results from a content analysis of data policies found discrepancies among editors' assertion of data policy requirements, authors' understanding of policy requirements, and the requirements stated in the policy language as written. We offer explanations for these discrepancies and offer recommendations for improving authors' understanding of policies and increasing the likelihood of policy compliance.


Asunto(s)
Actitud , Políticas Editoriales , Publicaciones Periódicas como Asunto/normas , Adhesión a Directriz/estadística & datos numéricos , Humanos , Encuestas y Cuestionarios , Escritura/normas
6.
Syst Biol ; 69(2): 345-362, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31596473

RESUMEN

There is a growing body of research on the evolution of anatomy in a wide variety of organisms. Discoveries in this field could be greatly accelerated by computational methods and resources that enable these findings to be compared across different studies and different organisms and linked with the genes responsible for anatomical modifications. Homology is a key concept in comparative anatomy; two important types are historical homology (the similarity of organisms due to common ancestry) and serial homology (the similarity of repeated structures within an organism). We explored how to most effectively represent historical and serial homology across anatomical structures to facilitate computational reasoning. We assembled a collection of homology assertions from the literature with a set of taxon phenotypes for the skeletal elements of vertebrate fins and limbs from the Phenoscape Knowledgebase. Using seven competency questions, we evaluated the reasoning ramifications of two logical models: the Reciprocal Existential Axioms (REA) homology model and the Ancestral Value Axioms (AVA) homology model. The AVA model returned all user-expected results in addition to the search term and any of its subclasses. The AVA model also returns any superclass of the query term in which a homology relationship has been asserted. The REA model returned the user-expected results for five out of seven queries. We identify some challenges of implementing complete homology queries due to limitations of OWL reasoning. This work lays the foundation for homology reasoning to be incorporated into other ontology-based tools, such as those that enable synthetic supermatrix construction and candidate gene discovery. [Homology; ontology; anatomy; morphology; evolution; knowledgebase; phenoscape.].


Asunto(s)
Clasificación/métodos , Modelos Biológicos , Aletas de Animales/anatomía & histología , Animales , Extremidades/anatomía & histología , Vertebrados/anatomía & histología
7.
PeerJ Comput Sci ; 5: e234, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33816887

RESUMEN

Conferences with contributed talks grouped into multiple concurrent sessions pose an interesting scheduling problem. From an attendee's perspective, choosing which talks to visit when there are many concurrent sessions is challenging since an individual may be interested in topics that are discussed in different sessions simultaneously. The frequency of topically similar talks in different concurrent sessions is, in fact, a common cause for complaint in post-conference surveys. Here, we introduce a practical solution to the conference scheduling problem by heuristic optimization of an objective function that weighs the occurrence of both topically similar talks in one session and topically different talks in concurrent sessions. Rather than clustering talks based on a limited number of preconceived topics, we employ a topic model to allow the topics to naturally emerge from the corpus of contributed talk titles and abstracts. We then measure the topical distance between all pairs of talks. Heuristic optimization of preliminary schedules seeks to balance the topical similarity of talks within a session and the dissimilarity between concurrent sessions. Using an ecology conference as a test case, we find that stochastic optimization dramatically improves the objective function relative to the schedule manually produced by the program committee. Approximate Integer Linear Programming can be used to provide a partially-optimized starting schedule, but the final value of the discrimination ratio (an objective function used to estimate coherence within a session and disparity between concurrent sessions) is surprisingly insensitive to the starting schedule. Furthermore, we show that, in contrast to the manual process, arbitrary scheduling constraints are straightforward to include. We applied our method to a second biology conference with over 1,000 contributed talks plus scheduling constraints. In a randomized experiment, biologists responded similarly to a machine-optimized schedule and a highly modified schedule produced by domain experts on the conference program committee.

8.
Database (Oxford) ; 20182018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576485

RESUMEN

Natural language descriptions of organismal phenotypes, a principal object of study in biology, are abundant in the biological literature. Expressing these phenotypes as logical statements using ontologies would enable large-scale analysis on phenotypic information from diverse systems. However, considerable human effort is required to make these phenotype descriptions amenable to machine reasoning. Natural language processing tools have been developed to facilitate this task, and the training and evaluation of these tools depend on the availability of high quality, manually annotated gold standard data sets. We describe the development of an expert-curated gold standard data set of annotated phenotypes for evolutionary biology. The gold standard was developed for the curation of complex comparative phenotypes for the Phenoscape project. It was created by consensus among three curators and consists of entity-quality expressions of varying complexity. We use the gold standard to evaluate annotations created by human curators and those generated by the Semantic CharaParser tool. Using four annotation accuracy metrics that can account for any level of relationship between terms from two phenotype annotations, we found that machine-human consistency, or similarity, was significantly lower than inter-curator (human-human) consistency. Surprisingly, allowing curatorsaccess to external information did not significantly increase the similarity of their annotations to the gold standard or have a significant effect on inter-curator consistency. We found that the similarity of machine annotations to the gold standard increased after new relevant ontology terms had been added. Evaluation by the original authors of the character descriptions indicated that the gold standard annotations came closer to representing their intended meaning than did either the curator or machine annotations. These findings point toward ways to better design software to augment human curators and the use of the gold standard corpus will allow training and assessment of new tools to improve phenotype annotation accuracy at scale.


Asunto(s)
Curaduría de Datos/métodos , Minería de Datos/métodos , Ontología de Genes , Procesamiento de Lenguaje Natural , Fenotipo , Humanos
9.
F1000Res ; 7: 1361, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30345032

RESUMEN

We report the complete plastome sequences of an endemic and an unidentified species from the genus Psidium in the Galápagos Islands ( P. galapageium and Psidium sp. respectively).


Asunto(s)
Psidium , Ecuador
10.
Pac Symp Biocomput ; 21: 132-43, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26776180

RESUMEN

There is growing use of ontologies for the measurement of cross-species phenotype similarity. Such similarity measurements contribute to diverse applications, such as identifying genetic models for human diseases, transferring knowledge among model organisms, and studying the genetic basis of evolutionary innovations. Two organismal features, whether genes, anatomical parts, or any other inherited feature, are considered to be homologous when they are evolutionarily derived from a single feature in a common ancestor. A classic example is the homology between the paired fins of fishes and vertebrate limbs. Anatomical ontologies that model the structural relations among parts may fail to include some known anatomical homologies unless they are deliberately added as separate axioms. The consequences of neglecting known homologies for applications that rely on such ontologies has not been well studied. Here, we examine how semantic similarity is affected when external homology knowledge is included. We measure phenotypic similarity between orthologous and non-orthologous gene pairs between humans and either mouse or zebrafish, and compare the inclusion of real with faux homology axioms. Semantic similarity was preferentially increased for orthologs when using real homology axioms, but only in the more divergent of the two species comparisons (human to zebrafish, not human to mouse), and the relative increase was less than 1% to non-orthologs. By contrast, inclusion of both real and faux random homology axioms preferentially increased similarities between genes that were initially more dissimilar in the other comparisons. Biologically meaningful increases in semantic similarity were seen for a select subset of gene pairs. Overall, the effect of including homology axioms on cross-species semantic similarity was modest at the levels of divergence examined here, but our results hint that it may be greater for more distant species comparisons.


Asunto(s)
Anatomía Comparada/métodos , Anatomía Comparada/estadística & datos numéricos , Animales , Biología Computacional/métodos , Biología Computacional/estadística & datos numéricos , Evolución Molecular , Humanos , Ratones , Fenotipo , Semántica , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Integración de Sistemas , Pez Cebra/anatomía & histología , Pez Cebra/genética
11.
Mol Biol Evol ; 33(1): 13-24, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26500251

RESUMEN

Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish. For this, we searched ZFIN for genetic perturbations that result in either loss of basihyal element or loss of scales phenotypes, because these are the ancestral phenotypes observed in catfishes (Siluriformes). We tested the identified candidate genes by examining their endogenous expression patterns in the channel catfish, Ictalurus punctatus. The experimental results were consistent with the hypotheses that these features evolved through disruption in developmental pathways at, or upstream of, brpf1 and eda/edar for the ancestral losses of basihyal element and scales, respectively. These results demonstrate that ontological annotations of the phenotypic effects of genetic alterations in model organisms, when aggregated within a knowledgebase, can be used effectively to generate testable, and useful, hypotheses about evolutionary changes in morphology.


Asunto(s)
Bagres/genética , Evolución Molecular , Expresión Génica , Modelos Genéticos , Fenotipo , Animales , Biología Computacional , Expresión Génica/genética , Expresión Génica/fisiología , Programas Informáticos
12.
Genesis ; 53(8): 561-71, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26220875

RESUMEN

The abundance of phenotypic diversity among species can enrich our knowledge of development and genetics beyond the limits of variation that can be observed in model organisms. The Phenoscape Knowledgebase (KB) is designed to enable exploration and discovery of phenotypic variation among species. Because phenotypes in the KB are annotated using standard ontologies, evolutionary phenotypes can be compared with phenotypes from genetic perturbations in model organisms. To illustrate the power of this approach, we review the use of the KB to find taxa showing evolutionary variation similar to that of a query gene. Matches are made between the full set of phenotypes described for a gene and an evolutionary profile, the latter of which is defined as the set of phenotypes that are variable among the daughters of any node on the taxonomic tree. Phenoscape's semantic similarity interface allows the user to assess the statistical significance of each match and flags matches that may only result from differences in annotation coverage between genetic and evolutionary studies. Tools such as this will help meet the challenge of relating the growing volume of genetic knowledge in model organisms to the diversity of phenotypes in nature. The Phenoscape KB is available at http://kb.phenoscape.org.


Asunto(s)
Bases de Datos Genéticas , Estudios de Asociación Genética/métodos , Animales , Evolución Biológica , Biología Computacional/métodos , Humanos , Bases del Conocimiento , Fenotipo
13.
J Biomed Semantics ; 5(1): 45, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25411634

RESUMEN

BACKGROUND: Phenex (http://phenex.phenoscape.org/) is a desktop application for semantically annotating the phenotypic character matrix datasets common in evolutionary biology. Since its initial publication, we have added new features that address several major bottlenecks in the efficiency of the phenotype curation process: allowing curators during the data curation phase to provisionally request terms that are not yet available from a relevant ontology; supporting quality control against annotation guidelines to reduce later manual review and revision; and enabling the sharing of files for collaboration among curators. RESULTS: We decoupled data annotation from ontology development by creating an Ontology Request Broker (ORB) within Phenex. Curators can use the ORB to request a provisional term for use in data annotation; the provisional term can be automatically replaced with a permanent identifier once the term is added to an ontology. We added a set of annotation consistency checks to prevent common curation errors, reducing the need for later correction. We facilitated collaborative editing by improving the reliability of Phenex when used with online folder sharing services, via file change monitoring and continual autosave. CONCLUSIONS: With the addition of these new features, and in particular the Ontology Request Broker, Phenex users have been able to focus more effectively on data annotation. Phenoscape curators using Phenex have reported a smoother annotation workflow, with much reduced interruptions from ontology maintenance and file management issues.

14.
Genome Biol Evol ; 6(1): 53-64, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24336482

RESUMEN

Major unresolved questions in evolutionary genetics include determining the contributions of different mutational sources to the total pool of genetic variation in a species, and understanding how these different forms of genetic variation interact with natural selection. Recent work has shown that structural variants (SVs) (insertions, deletions, inversions, and transpositions) are a major source of genetic variation, often outnumbering single nucleotide variants in terms of total bases affected. Despite the near ubiquity of SVs, major questions about their interaction with natural selection remain. For example, how does the allele frequency spectrum of SVs differ when compared with single nucleotide variants? How often do SVs affect genes, and what are the consequences? To begin to address these questions, we have systematically identified and characterized a large set of submicroscopic insertion and deletion (indel) variants (between 1 and 200 kb in length) among ten inbred lines from a single natural population of the plant species Mimulus guttatus. After extensive computational filtering, we focused on a set of 4,142 high-confidence indels that showed an experimental validation rate of 73%. All but one of these indels were less than 200 kb. Although the largest were generally at lower frequencies in the population, a surprising number of large indels are at intermediate frequencies. Although indels overlapping with genes were much rarer than expected by chance, approximately 600 genes were affected by an indel. Nucleotide-binding site leucine-rich repeat (NBS-LRR) defense response genes were the most enriched among the gene families affected. Most indels associated with genes were rare and appeared to be under purifying selection, though we do find four high-frequency derived insertion alleles that show signatures of recent positive selection.


Asunto(s)
Genoma de Planta , Variación Estructural del Genoma , Mimulus/genética , Frecuencia de los Genes , Mutación INDEL , Proteínas Repetidas Ricas en Leucina , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Proteínas/genética , Selección Genética
16.
J Biomed Semantics ; 4(1): 34, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24267744

RESUMEN

BACKGROUND: A hierarchical taxonomy of organisms is a prerequisite for semantic integration of biodiversity data. Ideally, there would be a single, expansive, authoritative taxonomy that includes extinct and extant taxa, information on synonyms and common names, and monophyletic supraspecific taxa that reflect our current understanding of phylogenetic relationships. DESCRIPTION: As a step towards development of such a resource, and to enable large-scale integration of phenotypic data across vertebrates, we created the Vertebrate Taxonomy Ontology (VTO), a semantically defined taxonomic resource derived from the integration of existing taxonomic compilations, and freely distributed under a Creative Commons Zero (CC0) public domain waiver. The VTO includes both extant and extinct vertebrates and currently contains 106,947 taxonomic terms, 22 taxonomic ranks, 104,736 synonyms, and 162,400 cross-references to other taxonomic resources. Key challenges in constructing the VTO included (1) extracting and merging names, synonyms, and identifiers from heterogeneous sources; (2) structuring hierarchies of terms based on evolutionary relationships and the principle of monophyly; and (3) automating this process as much as possible to accommodate updates in source taxonomies. CONCLUSIONS: The VTO is the primary source of taxonomic information used by the Phenoscape Knowledgebase (http://phenoscape.org/), which integrates genetic and evolutionary phenotype data across both model and non-model vertebrates. The VTO is useful for inferring phenotypic changes on the vertebrate tree of life, which enables queries for candidate genes for various episodes in vertebrate evolution.

17.
PeerJ ; 1: e175, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24109559

RESUMEN

Background. Attribution to the original contributor upon reuse of published data is important both as a reward for data creators and to document the provenance of research findings. Previous studies have found that papers with publicly available datasets receive a higher number of citations than similar studies without available data. However, few previous analyses have had the statistical power to control for the many variables known to predict citation rate, which has led to uncertain estimates of the "citation benefit". Furthermore, little is known about patterns in data reuse over time and across datasets. Method and Results. Here, we look at citation rates while controlling for many known citation predictors and investigate the variability of data reuse. In a multivariate regression on 10,555 studies that created gene expression microarray data, we found that studies that made data available in a public repository received 9% (95% confidence interval: 5% to 13%) more citations than similar studies for which the data was not made available. Date of publication, journal impact factor, open access status, number of authors, first and last author publication history, corresponding author country, institution citation history, and study topic were included as covariates. The citation benefit varied with date of dataset deposition: a citation benefit was most clear for papers published in 2004 and 2005, at about 30%. Authors published most papers using their own datasets within two years of their first publication on the dataset, whereas data reuse papers published by third-party investigators continued to accumulate for at least six years. To study patterns of data reuse directly, we compiled 9,724 instances of third party data reuse via mention of GEO or ArrayExpress accession numbers in the full text of papers. The level of third-party data use was high: for 100 datasets deposited in year 0, we estimated that 40 papers in PubMed reused a dataset by year 2, 100 by year 4, and more than 150 data reuse papers had been published by year 5. Data reuse was distributed across a broad base of datasets: a very conservative estimate found that 20% of the datasets deposited between 2003 and 2007 had been reused at least once by third parties. Conclusion. After accounting for other factors affecting citation rate, we find a robust citation benefit from open data, although a smaller one than previously reported. We conclude there is a direct effect of third-party data reuse that persists for years beyond the time when researchers have published most of the papers reusing their own data. Other factors that may also contribute to the citation benefit are considered. We further conclude that, at least for gene expression microarray data, a substantial fraction of archived datasets are reused, and that the intensity of dataset reuse has been steadily increasing since 2003.

18.
PLoS Biol ; 11(1): e1001468, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23335860

RESUMEN

How should funding agencies enable researchers to explore high-risk but potentially high-reward science? One model that appears to work is the NSF-funded synthesis center, an incubator for community-led, innovative science.


Asunto(s)
Investigación Biomédica/economía , Financiación Gubernamental/economía , Interpretación Estadística de Datos , Administración Financiera , Humanos , Investigadores , Estados Unidos
19.
J Appl Ichthyol ; 28(3): 300-305, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22736877

RESUMEN

The rich phenotypic diversity that characterizes the vertebrate skeleton results from evolutionary changes in regulation of genes that drive development. Although relatively little is known about the genes that underlie the skeletal variation among fish species, significant knowledge of genetics and development is available for zebrafish. Because developmental processes are highly conserved, this knowledge can be leveraged for understanding the evolution of skeletal diversity. We developed the Phenoscape Knowledgebase (KB; http://kb.phenoscape.org) to yield testable hypotheses of candidate genes involved in skeletal evolution. We developed a community anatomy ontology for fishes and ontology-based methods to represent complex free-text character descriptions of species in a computable format. With these tools, we populated the KB with comparative morphological data from the literature on over 2,500 teleost fishes (mainly Ostariophysi) resulting in over 500,000 taxon phenotype annotations. The KB integrates these data with similarly structured phenotype data from zebrafish genes (http://zfin.org). Using ontology-based reasoning, candidate genes can be inferred for the phenotypes that vary across taxa, thereby uniting genetic and phenotypic data to formulate evo-devo hypotheses. The morphological data in the KB can be browsed, sorted, and aggregated in ways that provide unprecedented possibilities for data mining and discovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...