Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(2): 1447-1459, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38198520

RESUMEN

Uveal melanoma (UM) is the most common primary intraocular malignancy in the adult eye. Despite the aggressive local management of primary UM, the development of metastases is common with no effective treatment options for metastatic disease. Genetic analysis of UM samples reveals the presence of mutually exclusive activating mutations in the Gq alpha subunits GNAQ and GNA11. One of the key downstream targets of the constitutively active Gq alpha subunits is the protein kinase C (PKC) signaling pathway. Herein, we describe the discovery of darovasertib (NVP-LXS196), a potent pan-PKC inhibitor with high whole kinome selectivity. The lead series was optimized for kinase and off target selectivity to afford a compound that is rapidly absorbed and well tolerated in preclinical species. LXS196 is being investigated in the clinic as a monotherapy and in combination with other agents for the treatment of uveal melanoma (UM), including primary UM and metastatic uveal melanoma (MUM).


Asunto(s)
Melanoma , Neoplasias de la Úvea , Adulto , Humanos , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/patología , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación
2.
Cell Chem Biol ; 30(3): 235-247.e12, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36863346

RESUMEN

Malignant tumors can evade destruction by the immune system by attracting immune-suppressive regulatory T cells (Treg) cells. The IKZF2 (Helios) transcription factor plays a crucial role in maintaining function and stability of Treg cells, and IKZF2 deficiency reduces tumor growth in mice. Here we report the discovery of NVP-DKY709, a selective molecular glue degrader of IKZF2 that spares IKZF1/3. We describe the recruitment-guided medicinal chemistry campaign leading to NVP-DKY709 that redirected the degradation selectivity of cereblon (CRBN) binders from IKZF1 toward IKZF2. Selectivity of NVP-DKY709 for IKZF2 was rationalized by analyzing the DDB1:CRBN:NVP-DKY709:IKZF2(ZF2 or ZF2-3) ternary complex X-ray structures. Exposure to NVP-DKY709 reduced the suppressive activity of human Treg cells and rescued cytokine production in exhausted T-effector cells. In vivo, treatment with NVP-DKY709 delayed tumor growth in mice with a humanized immune system and enhanced immunization responses in cynomolgus monkeys. NVP-DKY709 is being investigated in the clinic as an immune-enhancing agent for cancer immunotherapy.


Asunto(s)
Neoplasias , Factores de Transcripción , Animales , Humanos , Ratones , Factor de Transcripción Ikaros , Inmunoterapia , Neoplasias/terapia , Neoplasias/metabolismo , Linfocitos T Reguladores/metabolismo , Factores de Transcripción/metabolismo
3.
Sci Rep ; 12(1): 1892, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115599

RESUMEN

The human gut microbiome plays a central role in health and disease. Environmental factors, such as lifestyle and diet, are known to shape the gut microbiome as well as the reservoir of resistance genes that these microbes harbour; the resistome. In this study we assessed whether long-term dietary habits within a single geographical region (the Netherlands) impact the human gut resistome. Faecal samples from Dutch omnivores, pescatarians, vegetarians and vegans were analysed by metagenomic shotgun sequencing (MSS) (n = 149) and resistome capture sequencing approach (ResCap) (n = 64). Among all diet groups, 119 and 145 unique antibiotic resistance genes (ARGs) were detected by MSS or ResCap, respectively. Five or fifteen ARGs were shared between all diet groups, based on MSS and ResCap, respectively. The total number of detected ARGs by MSS or ResCap was not significantly different between the groups. MSS also revealed that vegans have a distinct microbiome composition, compared to other diet groups. Vegans had a lower abundance of Streptococcus thermophilus and Lactococcus lactis compared to pescatarians and a lower abundance of S. thermophilus when compared to omnivores. In summary, our study showed that long-term dietary habits are not associated with a specific resistome signature.


Asunto(s)
Bacterias/genética , Dieta , Farmacorresistencia Bacteriana/genética , Conducta Alimentaria , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Adulto , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Dieta Vegana , Dieta Vegetariana , Heces/microbiología , Femenino , Humanos , Masculino , Carne , Metagenoma , Metagenómica , Persona de Mediana Edad , Países Bajos , Valor Nutritivo , Alimentos Marinos , Factores de Tiempo , Verduras
4.
PeerJ ; 9: e11000, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732552

RESUMEN

Genome sequences provide information on the genetic elements present in an organism, and currently there are databases containing hundreds of thousands of bacterial genome sequences. These repositories allow for mining patterns concerning antibiotic resistance gene occurrence in both pathogenic and non-pathogenic bacteria in e.g. natural or animal environments, and link these to relevant metadata such as bacterial host species, country and year of isolation, and co-occurrence with other resistance genes. In addition, the advances in the prediction of mobile genetic elements, and discerning chromosomal from plasmid DNA, broadens our view on the mechanism mediating dissemination. In this study we utilize the vast amount of data in the public database PATRIC to investigate the dissemination of carbapenemase-encoding genes (CEGs), the emergence and spread of which is considered a grave public health concern. Based on publicly available genome sequences from PATRIC and manually curated CEG sequences from the beta lactam database, we found 7,964 bacterial genomes, belonging to at least 70 distinct species, that carry in total 9,892 CEGs, amongst which bla NDM, bla OXA, bla VIM, bla IMP and bla KPC. We were able to distinguish between chromosomally located resistance genes (4,137; 42%) and plasmid-located resistance genes (5,753; 58%). We found that a large proportion of the identified CEGs were identical, i.e. displayed 100% nucleotide similarity in multiple bacterial species (8,361 out of 9,892 genes; 85%). For example, the New Delhi metallo-beta-lactamase NDM-1 was found in 42 distinct bacterial species, and present in seven different environments. Our data show the extent of carbapenem-resistance far beyond the canonical species Acetinobacter baumannii, Klebsiella pneumoniae or Pseudomonas aeruginosa. These types of data complement previous systematic reviews, in which carbapenem-resistant Enterobacteriaceae were found in wildlife, livestock and companion animals. Considering the widespread distribution of CEGs, we see a need for comprehensive surveillance and transmission studies covering more host species and environments, akin to previous extensive surveys that focused on extended spectrum beta-lactamases. This may help to fully appreciate the spread of CEGs and improve the understanding of mechanisms underlying transmission, which could lead to interventions minimizing transmission to humans.

5.
Front Microbiol ; 11: 588468, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304333

RESUMEN

A syngas-degrading enrichment culture, culture T-Syn, was dominated by a bacterium closely related to Desulfofundulus australicus strain AB33T (98% 16S rRNA gene sequence identity). Culture T-Syn could convert high CO concentrations (from pCO ≈ 34 kPa to pCO ≈ 170 kPa), both in the absence and in the presence of sulfate as external electron acceptor. The products formed from CO conversion were H2 and acetate. With sulfate, a lower H2/acetate ratio was observed in the product profile, but CO conversion rates were similar to those in the absence of sulfate. The ability of D. australicus strain AB33T to use CO was also investigated. D. australicus strain AB33T uses up to 40% CO (pCO ≈ 68 kPa) with sulfate and up to 20% CO (pCO ≈ 34 kPa) without sulfate. Comparison of the metagenome-assembled genome (MAG) of the Desulfofundulus sp. from T-Syn culture with the genome of D. australicus strain AB33T revealed high similarity, with an ANI value of 99% and only 32 unique genes in the genome of the Desulfofundulus sp. T-Syn. So far, only Desulfotomaculum nigrificans strain CO-1-SRB had been described to grow with CO with and without sulfate. This work further shows the carboxydotrophic potential of Desulfofundulus genus for CO conversion, both in sulfate-rich and low-sulfate environments.

6.
PLoS One ; 15(10): e0234671, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33031371

RESUMEN

Tomato brown rugose fruit virus (ToBRFV) is a Tobamovirus that was first observed in 2014 and 2015 on tomato plants in Israel and Jordan respectively. Since the first description, the virus has been reported from all continents except Oceania and Antarctica, and has been found infecting both tomato and pepper crops. In October 2019, the Dutch National Plant Protection Organization received a ToBRFV infected tomato sample as part of a generic survey targeting tomato pests. Presence of the virus was verified using Illumina sequencing. A follow-up survey was initiated to determine the extent of ToBRFV presence in the Dutch tomato horticulture and identify possible linkages between ToBRFV genotypes, companies and epidemiological traits. Nextstrain was used to visualize these potential connections. By November 2019, 68 companies had been visited of which 17 companies were found to be infected. The 50 ToBRFV genomes from these outbreak locations group in three main clusters, which are hypothesized to represent three original sources. No correlation was found between genotypes, companies and epidemiological traits, and the source(s) of the Dutch ToBRFV outbreak remain unknown. This paper describes a Nextstrain build containing ToBRFV genomes up to and including November 2019. Sharing data with this interactive online tool will enable the plant virology field to better understand and communicate the diversity and spread of this new virus. Organizations are invited to share data or materials for inclusion in the Nextstrain build, which can be accessed at https://nextstrain.nrcnvwa.nl/ToBRFV/20191231.


Asunto(s)
Enfermedades de las Plantas/virología , Análisis de Secuencia de ARN/métodos , Solanum lycopersicum/virología , Tobamovirus/aislamiento & purificación , Biología Computacional , Brotes de Enfermedades/estadística & datos numéricos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Difusión de la Información , Países Bajos/epidemiología , Enfermedades de las Plantas/estadística & datos numéricos , ARN Viral/genética , Tobamovirus/genética
7.
J Antimicrob Chemother ; 75(3): 543-549, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31800052

RESUMEN

BACKGROUND: ESBL and AmpC ß-lactamases are an increasing concern for public health. Studies suggest that ESBL/pAmpC-producing Escherichia coli and their plasmids carrying antibiotic resistance genes can spread from broilers to humans working or living on broiler farms. These studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these isolates. METHODS: Eleven suspected transmission events among broilers and humans living/working on eight broiler farms were investigated using whole-genome short-read (Illumina) and long-read sequencing (PacBio). Core genome MLST (cgMLST) was performed to investigate the occurrence of strain transmission. Horizontal plasmid and gene transfer were analysed using BLAST. RESULTS: Of eight suspected strain transmission events, six were confirmed. The isolate pairs had identical ESBL/AmpC genes and fewer than eight allelic differences according to the cgMLST, and five had an almost identical plasmid composition. On one of the farms, cgMLST revealed that the isolate pairs belonging to ST10 from a broiler and a household member of the farmer had 475 different alleles, but that the plasmids were identical, indicating horizontal transfer of mobile elements rather than strain transfer. Of three suspected horizontal plasmid transmission events, one was confirmed. In addition, gene transfer between plasmids was found. CONCLUSIONS: The present study confirms transmission of strains as well as horizontal plasmid and gene transfer between broilers and farmers and household members on the same farm. WGS is an important tool to confirm suspected zoonotic strain and resistance gene transmission.


Asunto(s)
Infecciones por Escherichia coli , Animales , Antibacterianos/farmacología , Pollos , Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Granjas , Humanos , Tipificación de Secuencias Multilocus , Plásmidos/genética , beta-Lactamasas/genética
8.
Am Nat ; 194(3): 422-431, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31553212

RESUMEN

The use of DNA demethylating agents has been popular in epigenetic studies. Recently, Cook and colleagues, in a 2015 American Naturalist article, claimed an effect of 5-aza-2'-deoxycytidine (5-aza-dC) on the sex ratio of a parasitoid wasp without verifying its effect on DNA methylation. We repeated the 5-aza-dC feeding treatment to test its effectiveness. We used bisulfite amplicon sequencing of 10 genes that either were heavily methylated, previously showed a response to 5-aza-dC, or were suggested to regulate fatty acid synthesis epigenetically, and we demonstrate that wasps fed 5-aza-dC did not show reduced DNA methylation at these loci. Therefore, the conclusion that demethylation shifts sex ratios upward needs reconsideration.


Asunto(s)
Metilación de ADN , Avispas , Animales , Azacitidina , Decitabina , Razón de Masculinidad
9.
J Med Chem ; 61(22): 10155-10172, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30339381

RESUMEN

SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily A member 2 (SMARCA2), also known as Brahma homologue (BRM), is a Snf2-family DNA-dependent ATPase. BRM and its close homologue Brahma-related gene 1 (BRG1), also known as SMARCA4, are mutually exclusive ATPases of the large ATP-dependent SWI/SNF chromatin-remodeling complexes involved in transcriptional regulation of gene expression. No small molecules have been reported that modulate SWI/SNF chromatin-remodeling activity via inhibition of its ATPase activity, an important goal given the well-established dependence of BRG1-deficient cancers on BRM. Here, we describe allosteric dual BRM and BRG1 inhibitors that downregulate BRM-dependent gene expression and show antiproliferative activity in a BRG1-mutant-lung-tumor xenograft model upon oral administration. These compounds represent useful tools for understanding the functions of BRM in BRG1-loss-of-function settings and should enable probing the role of SWI/SNF functions more broadly in different cancer contexts and those of other diseases.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , ADN Helicasas/genética , Diseño de Fármacos , Mutación , Proteínas Nucleares/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Administración Oral , Animales , Antineoplásicos/química , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad , Factores de Transcripción/química , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Nat Commun ; 9(1): 239, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29339722

RESUMEN

Methanol is generally metabolized through a pathway initiated by a cobalamine-containing methanol methyltransferase by anaerobic methylotrophs (such as methanogens and acetogens), or through oxidation to formaldehyde using a methanol dehydrogenase by aerobes. Methanol is an important substrate in deep-subsurface environments, where thermophilic sulfate-reducing bacteria of the genus Desulfotomaculum have key roles. Here, we study the methanol metabolism of Desulfotomaculum kuznetsovii strain 17T, isolated from a 3000-m deep geothermal water reservoir. We use proteomics to analyze cells grown with methanol and sulfate in the presence and absence of cobalt and vitamin B12. The results indicate the presence of two methanol-degrading pathways in D. kuznetsovii, a cobalt-dependent methanol methyltransferase and a cobalt-independent methanol dehydrogenase, which is further confirmed by stable isotope fractionation. This is the first report of a microorganism utilizing two distinct methanol conversion pathways. We hypothesize that this gives D. kuznetsovii a competitive advantage in its natural environment.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Proteínas Bacterianas/metabolismo , Desulfotomaculum/enzimología , Redes y Vías Metabólicas/genética , Metanol/metabolismo , Metiltransferasas/metabolismo , Alcohol Deshidrogenasa/genética , Proteínas Bacterianas/genética , Cobalto/metabolismo , Cobalto/farmacología , Medios de Cultivo/química , Desulfotomaculum/genética , Expresión Génica , Perfilación de la Expresión Génica , Hidrólisis , Metiltransferasas/genética , Oxidación-Reducción , Filogenia , Proteómica/métodos , Vitamina B 12/metabolismo , Vitamina B 12/farmacología
11.
Ecol Evol ; 7(2): 689-696, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28116063

RESUMEN

When related species meet upon postglacial range expansion, hybrid zones are frequently formed. Theory predicts that such zones may move over the landscape until equilibrium conditions are reached. One hybrid zone observed to be moving in historical times (1950-1979) is that of the pond-breeding salamanders Triturus cristatus and Triturus marmoratus in western France. We identified the ecological correlates of the species hybrid zone as elevation, forestation, and hedgerows favoring the more terrestrial T. marmoratus and pond density favoring the more aquatic T. cristatus. The past movement of the zone of ca. 30 km over three decades has probably been driven by the drastic postwar reduction of the "bocage" hedgerow landscape, favoring T. cristatus over T. marmoratus. No further hybrid zone movement was observed from 1979 to the present. To explain the changing dynamics of the hybrid zone, we propose that it stalled, either because an equilibrium was found at an altitude of ca. 140 m a.s.l. or due to pond loss and decreased population densities. While we cannot rule out the former explanation, we found support for the latter. Under agricultural intensification, ponds in the study area are lost at an unprecedented rate of 5.5% per year, so that remaining Triturus populations are increasingly isolated, hampering dispersal and further hybrid zone movement.

12.
Int J Syst Evol Microbiol ; 66(2): 762-767, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26597812

RESUMEN

A genome and physiological comparison was made of the type strains of Desulfotomaculum species belonging to subgroup 1a and of 'Desulfotomaculum reducens' strain MI-1. Phenotypically, 'Desulfotomaculum reducens' strain MI-1 can be distinguished from the other described Desulfotomaculum species of subgroup 1a by its ability to grow with propionate and butyrate. In addition, the strain is able to use a variety of metals as electron acceptors. Metal reduction has not been tested in the other species, but seems likely based on our genome analysis. Phylogenetic 16S rRNA gene sequence analysis and the average nucleotide identity between the genomes of the species of subgroup 1a show that strain MI-1 represents a novel species within the Desulfotomaculum 1a subgroup, Desulfotomaculum reducens sp. nov. The type strain is MI-1T.

13.
Environ Microbiol ; 18(9): 2843-55, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26147498

RESUMEN

The Sporomusa genus comprises anaerobic spore-forming acetogenic bacteria that stain Gram-negative. Sporomusa species typically grow with one-carbon substrates and N-methylated compounds. In the degradation of these compounds methyltransferases are involved. In addition, Sporomusa species can grow autotrophically with H2 and CO2 , and use a variety of sugars for acetogenic growth. Here we describe a genome analysis of Sporomusa strain An4 and a proteome analysis of cells grown under five different conditions. Comparison of the genomes of Sporomusa strain An4 and Sporomusa ovata strain H1 indicated that An4 is a S. ovata strain. Proteome analysis showed a high abundance of several methyltransferases, predominantly trimethylamine methyltransferases, during growth with betaine, whereas trimethylamine is one of the main end-products of betaine degradation. In methanol degradation methyltransferases are also involved. In methanol-utilizing methanogens, two methyltransferases catalyse methanol conversion, methyltransferase 1 composed of subunits MtaB and MtaC and methyltransferase 2, also called MtaA. The two methyltransferase 1 subunits MtaB and MtaC were highly abundant when strain An4 was grown with methanol. However, instead of MtaA a methyltetrahydrofolate methyltransferase was synthesized. We propose a novel methanol degradation pathway in Sporomusa strain An4 that uses a methyltetrahydrofolate methyltransferase instead of MtaA.


Asunto(s)
Proteoma , Veillonellaceae/metabolismo , Betaína/metabolismo , Carbono/metabolismo , Genoma Bacteriano , Metanol/metabolismo , Metilaminas/metabolismo , Metiltransferasas/metabolismo , Veillonellaceae/enzimología , Veillonellaceae/genética
14.
Stand Genomic Sci ; 9(3): 655-75, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25197452

RESUMEN

Desulfotomaculum nigrificans and D. carboxydivorans are moderately thermophilic members of the polyphyletic spore-forming genus Desulfotomaculum in the family Peptococcaceae. They are phylogenetically very closely related and belong to 'subgroup a' of the Desulfotomaculum cluster 1. D. nigrificans and D. carboxydivorans have a similar growth substrate spectrum; they can grow with glucose and fructose as electron donors in the presence of sulfate. Additionally, both species are able to ferment fructose, although fermentation of glucose is only reported for D. carboxydivorans. D. nigrificans is able to grow with 20% carbon monoxide (CO) coupled to sulfate reduction, while D. carboxydivorans can grow at 100% CO with and without sulfate. Hydrogen is produced during growth with CO by D. carboxydivorans. Here we present a summary of the features of D. nigrificans and D. carboxydivorans together with the description of the complete genome sequencing and annotation of both strains. Moreover, we compared the genomes of both strains to reveal their differences. This comparison led us to propose a reclassification of D. carboxydivorans as a later heterotypic synonym of D. nigrificans.

15.
Stand Genomic Sci ; 9(3): 821-39, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25197466

RESUMEN

Desulfotomaculum gibsoniae is a mesophilic member of the polyphyletic spore-forming genus Desulfotomaculum within the family Peptococcaceae. This bacterium was isolated from a freshwater ditch and is of interest because it can grow with a large variety of organic substrates, in particular several aromatic compounds, short-chain and medium-chain fatty acids, which are degraded completely to carbon dioxide coupled to the reduction of sulfate. It can grow autotrophically with H2 + CO2 and sulfate and slowly acetogenically with H2 + CO2, formate or methoxylated aromatic compounds in the absence of sulfate. It does not require any vitamins for growth. Here, we describe the features of D. gibsoniae strain Groll(T) together with the genome sequence and annotation. The chromosome has 4,855,529 bp organized in one circular contig and is the largest genome of all sequenced Desulfotomaculum spp. to date. A total of 4,666 candidate protein-encoding genes and 96 RNA genes were identified. Genes of the acetyl-CoA pathway, possibly involved in heterotrophic growth and in CO2 fixation during autotrophic growth, are present. The genome contains a large set of genes for the anaerobic transformation and degradation of aromatic compounds, which are lacking in the other sequenced Desulfotomaculum genomes.

16.
Environ Microbiol Rep ; 6(6): 756-66, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25132579

RESUMEN

The genus Desulfotomaculum, belonging to the Firmicutes, comprises strictly anaerobic and endospore-forming bacteria capable of dissimilatory sulfate reduction. These microorganisms are metabolically versatile and are widely distributed in the environment. Spore formation allows them to survive prolonged environmental stress. Information on the mechanism of sporulation in Desulfotomaculum species is scarce. Herein, this process was probed from a genomic standpoint, using the Bacillus subtilis model system as a reference and clostridial sporulation for comparison. Desulfotomaculum falls somewhere in between the Bacillus and Clostridium in terms of conservation of sporulation proteins. Furthermore, it showcased the conservation of a core regulatory cascade throughout genera, while uncovering variability in the initiation of sporulation and the structural characteristics of spores from different genera. In particular, while in Clostridium species sporulation is not initiated by a phosphorelay, Desulfotomaculum species harbour homologues of the B. subtilis proteins involved in this process. Conversely, both Clostridium and Desulfotomaculum species conserve very few B. subtilis structural proteins, particularly those found in the outer layers of the spore. Desulfotomaculum species seem to share greater similarity to the outer layers of Clostridium difficile.


Asunto(s)
Bacillus/genética , Clostridium/genética , Desulfotomaculum/genética , Esporas Bacterianas/crecimiento & desarrollo , Secuencia de Aminoácidos , Bacillus/química , Bacillus/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clostridium/química , Clostridium/crecimiento & desarrollo , Desulfotomaculum/química , Desulfotomaculum/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Genómica , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Esporas Bacterianas/química , Esporas Bacterianas/genética
17.
Biochim Biophys Acta ; 1837(12): 2004-2016, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24973598

RESUMEN

In sulfate-reducing and methanogenic environments complex biopolymers are hydrolyzed and degraded by fermentative micro-organisms that produce hydrogen, carbon dioxide and short chain fatty acids. Degradation of short chain fatty acids can be coupled to methanogenesis or to sulfate-reduction. Here we study from a genome perspective why some of these micro-organisms are able to grow in syntrophy with methanogens and others are not. Bacterial strains were selected based on genome availability and upon their ability to grow on short chain fatty acids alone or in syntrophic association with methanogens. Systematic functional domain profiling allowed us to shed light on this fundamental and ecologically important question. Extra-cytoplasmic formate dehydrogenases (InterPro domain number; IPR006443), including their maturation protein FdhE (IPR024064 and IPR006452) is a typical difference between syntrophic and non-syntrophic butyrate and propionate degraders. Furthermore, two domains with a currently unknown function seem to be associated with the ability of syntrophic growth. One is putatively involved in capsule or biofilm production (IPR019079) and a second in cell division, shape-determination or sporulation (IPR018365). The sulfate-reducing bacteria Desulfobacterium autotrophicum HRM2, Desulfomonile tiedjei and Desulfosporosinus meridiei were never tested for syntrophic growth, but all crucial domains were found in their genomes, which suggests their possible ability to grow in syntrophic association with methanogens. In addition, profiling domains involved in electron transfer mechanisms revealed the important role of the Rnf-complex and the formate transporter in syntrophy, and indicate that DUF224 may have a role in electron transfer in bacteria other than Syntrophomonas wolfei as well. This article is a part of a Special Issue entitled: 18th European Bioenergetics Conference (Biochim. Biophys. Acta, Volume 1837, Issue 7, July 2014).


Asunto(s)
Bacterias Anaerobias/genética , Ácidos Grasos/metabolismo , Genoma Bacteriano/genética , Genómica/métodos , Anaerobiosis , Bacterias Anaerobias/clasificación , Bacterias Anaerobias/metabolismo , Butiratos/metabolismo , Ecosistema , Hidrógeno/metabolismo , Metano/metabolismo , Filogenia
18.
Stand Genomic Sci ; 8(1): 69-87, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23961313

RESUMEN

Desulfotomaculum kuznetsovii is a moderately thermophilic member of the polyphyletic spore-forming genus Desulfotomaculum in the family Peptococcaceae. This species is of interest because it originates from deep subsurface thermal mineral water at a depth of about 3,000 m. D. kuznetsovii is a rather versatile bacterium as it can grow with a large variety of organic substrates, including short-chain and long-chain fatty acids, which are degraded completely to carbon dioxide coupled to the reduction of sulfate. It can grow methylotrophically with methanol and sulfate and autotrophically with H2 + CO2 and sulfate. For growth it does not require any vitamins. Here, we describe the features of D. kuznetsovii together with the genome sequence and annotation. The chromosome has 3,601,386 bp organized in one contig. A total of 3,567 candidate protein-encoding genes and 58 RNA genes were identified. Genes of the acetyl-CoA pathway, possibly involved in heterotrophic growth with acetate and methanol, and in CO2 fixation during autotrophic growth are present. Genomic comparison revealed that D. kuznetsovii shows a high similarity with Pelotomaculum thermopropionicum. Genes involved in propionate metabolism of these two strains show a strong similarity. However, main differences are found in genes involved in the electron acceptor metabolism.

19.
J Med Chem ; 56(16): 6495-511, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23844574

RESUMEN

Tankyrase 1 and 2 have been shown to be redundant, druggable nodes in the Wnt pathway. As such, there has been intense interest in developing agents suitable for modulating the Wnt pathway in vivo by targeting this enzyme pair. By utilizing a combination of structure-based design and LipE-based structure efficiency relationships, the core of XAV939 was optimized into a more stable, more efficient, but less potent dihydropyran motif 7. This core was combined with elements of screening hits 2, 19, and 33 and resulted in highly potent, selective tankyrase inhibitors that are novel three pocket binders. NVP-TNKS656 (43) was identified as an orally active antagonist of Wnt pathway activity in the MMTV-Wnt1 mouse xenograft model. With an enthalpy-driven thermodynamic signature of binding, highly favorable physicochemical properties, and high lipophilic efficiency, NVP-TNKS656 is a novel tankyrase inhibitor that is well suited for further in vivo validation studies.


Asunto(s)
Acetamidas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Pirimidinonas/farmacología , Tanquirasas/antagonistas & inhibidores , Acetamidas/administración & dosificación , Acetamidas/química , Administración Oral , Animales , Área Bajo la Curva , Disponibilidad Biológica , Inhibidores Enzimáticos/administración & dosificación , Ratones , Modelos Moleculares , Pirimidinonas/administración & dosificación , Pirimidinonas/química , Relación Estructura-Actividad
20.
ACS Med Chem Lett ; 4(2): 186-90, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24900652

RESUMEN

Overexpression of the antiapoptotic members of the Bcl-2 family of proteins is commonly associated with cancer cell survival and resistance to chemotherapeutics. Here, we describe the structure-based optimization of a series of N-heteroaryl sulfonamides that demonstrate potent mechanism-based cell death. The role of the acidic nature of the sulfonamide moiety as it relates to potency, solubility, and clearance is examined. This has led to the discovery of novel heterocyclic replacements for the acylsulfonamide core of ABT-737 and ABT-263.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...