Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176135

RESUMEN

Plants are vulnerable to the challenges of unstable environments and pathogen infections due to their immobility. Among various stress conditions, viral infection is a major threat that causes significant crop loss. In response to viral infection, plants undergo complex molecular and physiological changes, which trigger defense and morphogenic pathways. Transcription factors (TFs), and their interactions with cofactors and cis-regulatory genomic elements, are essential for plant defense mechanisms. The transcriptional regulation by TFs is crucial in establishing plant defense and associated activities during viral infections. Therefore, identifying and characterizing the critical genes involved in the responses of plants against virus stress is essential for the development of transgenic plants that exhibit enhanced tolerance or resistance. This article reviews the current understanding of the transcriptional control of plant defenses, with a special focus on NAC, MYB, WRKY, bZIP, and AP2/ERF TFs. The review provides an update on the latest advances in understanding how plant TFs regulate defense genes expression during viral infection.


Asunto(s)
Virus de Plantas , Factores de Transcripción , Factores de Transcripción/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Virus de Plantas/genética , Virus de Plantas/metabolismo , Estrés Fisiológico/genética
2.
Front Plant Sci ; 13: 924482, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812928

RESUMEN

Plant argonautes (AGOs) play important roles in the defense responses against viruses. The expression of Nicotiana benthamiana AGO5 gene (NbAGO5) is highly induced by Bamboo mosaic virus (BaMV) infection; however, the underlying mechanisms remain elusive. In this study, we have analyzed the potential promoter activities of NbAGO5 and its interactions with viral proteins by using a 2,000 bp fragment, designated as PN1, upstream to the translation initiation of NbAGO5. PN1 and seven serial 5'-deletion mutants (PN2-PN8) were fused with a ß-glucuronidase (GUS) reporter and introduced into the N. benthamiana genome by Agrobacterium-mediated transformation for further characterization. It was found that PN4-GUS transgenic plants were able to drive strong GUS expression in the whole plant. In the virus infection tests, the GUS activity was strongly induced in PN4-GUS transgenic plants after being challenged with potexviruses. Infiltration of the transgenic plants individually with BaMV coat protein (CP) or triple gene block protein 1 (TGBp1) revealed that only TGBp1 was crucial for inducing the NbAGO5 promoter. To identify the factors responsible for controlling the activity of the NbAGO5 promoter, we employed yeast one-hybrid screening on a transcription factor cDNA library. The result showed that NbNAC42 and NbZFP3 could directly bind the 704 bp promoter regions of NbAGO5. By using overexpressing and virus-induced gene silencing techniques, we found that NbNAC42 and NbZFP3 regulated and downregulated, respectively, the expression of the NbAGO5 gene. Upon virus infection, NbNAC42 played an important role in regulating the expression of NbAGO5. Together, these results provide new insights into the modulation of the defense mechanism of N. benthamiana against viruses. This virus inducible promoter could be an ideal candidate to drive the target gene expression that could improve the anti-virus abilities of crops in the future.

3.
Front Plant Sci ; 10: 1258, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649713

RESUMEN

Orchids comprise one of the largest, most highly evolved angiosperm families, and form an extremely peculiar group of plants. Various orchids are available through traditional breeding and micro-propagation since they are valuable as potted plants and/or cut flowers in horticultural markets. The flowering of orchids is generally influenced by environmental signals such as temperature and endogenous developmental programs controlled by genetic factors as is usual in many flowering plant species. The process of floral transition is connected to the flower developmental programs that include floral meristem maintenance and floral organ specification. Thanks to advances in molecular and genetic technologies, the understanding of the molecular mechanisms underlying orchid floral transition and flower developmental processes have been widened, especially in several commercially important orchids such as Phalaenopsis, Dendrobium and Oncidium. In this review, we consolidate recent progress in research on the floral transition and flower development of orchids emphasizing representative genes and genetic networks, and also introduce a few successful cases of manipulation of orchid flowering/flower development through the application of molecular breeding or biotechnology tools.

4.
J Food Sci Technol ; 56(5): 2651-2659, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31168147

RESUMEN

In the present study, the finger millet grains were subjected to γ-irradiation at four different dosage levels: 2, 5, 10, and 15 kGy. Effect of γ-irradiation on the proximate composition, pasting properties, lipoxygenase activity, and antioxidant properties of finger millet flour was evaluated. Moisture, protein, fat, ash, and carbohydrate content of native flour was 12.96, 6.85, 2.73, 1.57, and 73.69 g/100 g, respectively. According to the results of proximate analysis, γ-irradiation significantly (p < 0.05) reduced the moisture contents and increased protein contents; however, the fat content of the irradiated flour was equal to or lower than that of the native flour. Pasting properties of the finger millet flour was reduced with the γ-irradiation. Compared with the native flour, lipoxygenase activity and malondialdehyde content decreased and radical scavenging activity, catalase, and superoxide dismutase activities increased in the irradiated flour with increasing γ-irradiation doses. Finally, the present study suggested that the γ-irradiation process improved the antioxidant enzymes and physicochemical characteristics; which could be helpful in formulating tailored made food products.

6.
PLoS One ; 13(3): e0194605, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29566053

RESUMEN

Carica papaya L. is an important economic crop worldwide and is used as a model plant for sex-determination research. To study the different flower sex types, we screened sex-related genes using alternative splicing sequences (AS-seqs) from a transcriptome database of the three flower sex types, i.e., males, females, and hermaphrodites, established at 28 days before flowering using 15 bacterial artificial chromosomes (BACs) of C. papaya L. After screening, the cDNA regions of the three sex-related loci, including short vegetative phase-like (CpSVPL), the chromatin assembly factor 1 subunit A-like (CpCAF1AL), and the somatic embryogenesis receptor kinase (CpSERK), which contained eight sex-related single-nucleotide polymorphisms (SNPs) from the different sex types of C. papaya L., were genotyped using high-resolution melting (HRM). The three loci were examined regarding the profiles of the third whorl, as described below. CpSVPL, which had one SNP associated with the three sex genotypes, was highly expressed in the male and female sterile flowers (abnormal hermaphrodite flowers) that lacked the fourth whorl structure. CpCAF1AL, which had three SNPs associated with the male genotype, was highly expressed in male and normal hermaphrodite flowers, and had no AS-seqs, whereas it exhibited low expression and an AS-seqs in intron 11 in abnormal hermaphrodite flowers. Conversely, carpellate flowers (abnormal hermaphrodite flowers) showed low expression of CpSVPL and AS-seqs in introns 5, 6, and 7 of CpSERK, which contained four SNPs associated with the female genotype. Specifically, the CpSERK and CpCAF1AL loci exhibited no AS-seq expression in the third whorl of the male and normal hermaphrodite flowers, respectively, and variance in the AS-seq expression of all other types of flowers. Functional mapping of the third whorl of normal hermaphrodites indicated no AS-seq expression in CpSERK, low CpSVPL expression, and, for CpCAF1AL, high expression and no AS-seq expression on XYh-type chromosomes.


Asunto(s)
Carica/genética , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Sitios Genéticos , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Cromosomas de las Plantas/química , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...