Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(22): 24756-24766, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32393018

RESUMEN

Despite the ever-growing demand for benzene-toluene-xylene (BTX), the alternative route of production from tree-borne oils is rarely investigated and poorly understood. Here, we have synthesized a Zn-loaded Y-zeolite catalyst for the continuous production of bio-BTX from tree-borne oils (nonedible seed oil), e.g., neem oil. Our approach involves low-temperature selective cracking-dehydrogenation-aromatization of neem oil over metal-supported catalysts to xylene-rich aromatics. The physicochemical properties of the prepared catalyst were characterized using powder XRD, N2 physisorption, TEM, NH3-TPD, XPS, Py-FTIR, solid-NMR, and TG analyses. Mesoporous Y-zeolites with a pore diameter of 7.4 Šshowed better selectivity toward aromatics and were found to be the most effective catalyst for the aromatization process, especially for BTX. The aromatic yield was found to increase with the addition of Zn, and the highest conversion of 90-94% with an ∼75% BTX yield was achieved with the ZnY catalyst. During aromatization, a sizable number of short alkanes and olefins were also obtained on acidic Y-zeolites. The off-gas composition shows the presence of ∼45% C2-C4 olefins with 8.9% H2. The incorporation of Zn species can promote the dehydrogenation activity, and the subsequent aromatization required a suitable pore network. The optimized ZnY catalyst inspires the formation of toluene and xylenes, inhibiting the formation of benzene and gaseous alkanes.

2.
ACS Omega ; 3(10): 12584-12592, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30411011

RESUMEN

Herein, the fluorescent carbon dots (CDs) with blue emission were prepared by hydrothermal treatment using pineapple peel as a source of carbon. The as-prepared CDs exhibited turn-Off fluorescence behavior toward Hg2+ and subsequent turn-On behavior for l-cysteine along with enhanced biocompatibility and negligible cytotoxicity for cell imaging. The practical applicability of carbon dots was used for the quantification of Hg2+ in water. On the basis of the spectral characteristic changes, we have designed individual elementary logic operations such as NOT and IMP gates, by utilizing CD as probe and Hg2+ and l-Cys as chemical inputs. We have also demonstrated the utility of this system in electronic security devices and as memory element, with the idea of the switching.

3.
Chem Soc Rev ; 46(1): 72-101, 2017 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-27809326

RESUMEN

Mesoporous carbon nitrides (MCNs) with large surface areas and uniform pore diameters are unique semiconducting materials and exhibit highly versatile structural and excellent physicochemical properties, which promote their application in diverse fields such as metal free catalysis, photocatalytic water splitting, energy storage and conversion, gas adsorption, separation, and even sensing. These fascinating MCN materials can be obtained through the polymerization of different aromatic and/or aliphatic carbons and high nitrogen containing molecular precursors via hard and/or soft templating approaches. One of the unique characteristics of these materials is that they exhibit both semiconducting and basic properties, which make them excellent platforms for the photoelectrochemical conversion and sensing of molecules such as CO2, and the selective sensing of toxic organic acids. The semiconducting features of these materials are finely controlled by varying the nitrogen content or local electronic structure of the MCNs. The incorporation of different functionalities including metal nanoparticles or organic molecules is further achieved in various ways to develop new electronic, semiconducting, catalytic, and energy harvesting materials. Dual functionalities including acidic and basic groups are also introduced in the wall structure of MCNs through simple UV-light irradiation, which offers enzyme-like properties in a single MCN system. In this review article, we summarize and highlight the existing literature covering every aspect of MCNs including their templating synthesis, modification and functionalization, and potential applications of these MCN materials with an overview of the key and relevant results. A special emphasis is given on the catalytic applications of MCNs including hydrogenation, oxidation, photocatalysis, and CO2 activation.

4.
Chem Soc Rev ; 46(2): 560, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-27900380

RESUMEN

Correction for 'Mesoporous carbon nitrides: synthesis, functionalization, and applications' by Kripal S. Lakhi et al., Chem. Soc. Rev., 2017, DOI: .

6.
J Nanosci Nanotechnol ; 9(9): 5188-97, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19928200

RESUMEN

The abilities of Keggin type polyoxometalate, silicotungstic acid (STA) to reduce metal ions by electron transfer and to modify carbon surface by strong adsorption have been explored for the preparation of Pt nanoparticles supported on carbon composites (20% Pt/STA-C). The prepared composites were characterized by Transmission electron microscopy (TEM and HRTEM)), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The electrocatalytic activities of the prepared nanocomposites were examined by using Cyclic voltammetry (CV) for oxygen reduction reaction which takes place at cathode in fuel cells. The prepared composite (20% Pt/STA-C) proved efficient compared to STA free 20% Pt/C, prepared by hydrogen reduction method. H2O2 intermediate formation is a serious concern as it reduces the activity of Pt sites during oxygen reduction. The composites prepared by polyoxometalate reduction method (20% Pt/STA-C) showed better reduction ability towards H2O2 compared to STA free 20% Pt/C composite and thus showed better performance as cathode electrocatalyst for fuel cells.

7.
Org Biomol Chem ; 4(16): 3044-7, 2006 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-16886069

RESUMEN

Efficient synthesis of chiral [2 + 2] macrocyclic tetraimines which display calixarene-like crystal structures has been described, with short reaction times under microwave irradiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...