Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 9(1): 228-240, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172619

RESUMEN

Integrons are genetic elements involved in bacterial adaptation which capture, shuffle and express genes encoding adaptive functions embedded in cassettes. These events are governed by the integron integrase through site-specific recombination between attC and attI integron sites. Using computational and molecular genetic approaches, here we demonstrate that the integrase also catalyses cassette integration into bacterial genomes outside of its known att sites. Once integrated, these cassettes can be expressed if located near bacterial promoters and can be excised at the integration point or outside, inducing chromosomal modifications in the latter case. Analysis of more than 5 × 105 independent integration events revealed a very large genomic integration landscape. We identified consensus recombination sequences, named attG sites, which differ greatly in sequence and structure from classical att sites. These results unveil an alternative route for dissemination of adaptive functions in bacteria and expand the role of integrons in bacterial evolution.


Asunto(s)
Genoma Bacteriano , Integrones , Integrones/genética , Bacterias/genética , Bacterias/metabolismo , Integrasas/genética , Integrasas/metabolismo , Genómica
2.
Sci Adv ; 10(2): eadj3498, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38215203

RESUMEN

Integrons are adaptive bacterial devices that rearrange promoter-less gene cassettes into variable ordered arrays under stress conditions, thereby sampling combinatorial phenotypic diversity. Chromosomal integrons often carry hundreds of silent gene cassettes, with integrase-mediated recombination leading to rampant DNA excision and integration, posing a potential threat to genome integrity. How this activity is regulated and controlled, particularly through selective pressures, to maintain such large cassette arrays is unknown. Here, we show a key role of promoter-containing toxin-antitoxin (TA) cassettes as systems that kill the cell when the overall cassette excision rate is too high. These results highlight the importance of TA cassettes regulating the cassette recombination dynamics and provide insight into the evolution and success of integrons in bacterial genomes.


Asunto(s)
Integrones , Sistemas Toxina-Antitoxina , Integrones/genética , Sistemas Toxina-Antitoxina/genética , Bacterias/genética , Genoma Bacteriano , Recombinación Genética
3.
Cancers (Basel) ; 15(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37173933

RESUMEN

Breast radiotherapy can lead to radiation-induced cardiac disease, particularly in left breast cancers. Recent studies have shown that subclinical cardiac lesions, such as myocardial perfusion deficits, may occur early after radiotherapy. The primary method for irradiating breast cancer, known as opposite tangential field radiotherapy, can cause the anterior interventricular coronary artery to receive a high dose of radiation during left breast irradiation. To explore alternative approaches that could reduce the risk of myocardial perfusion defects in patients with left breast cancer, we plan to conduct a prospective single-center study using a combination of deep inspiration breath hold radiotherapy and intensity modulated radiation therapy. The study will use stress and, if necessary, resting myocardial scintigraphy to assess myocardial perfusion. The trial aims to show that reducing the cardiac dose with these techniques can prevent the appearance of early (3-month) and medium-term (6- and 12-month) perfusion disorders.

4.
Small ; 19(12): e2205961, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36587987

RESUMEN

Improving the tumor reoxygenation to sensitize the tumor to radiation therapy is a cornerstone in radiation oncology. Here, the pre-clinical development of a clinically transferable liposomal formulation encapsulating trans sodium crocetinate (NP TSC) is reported to improve oxygen diffusion through the tumor environment. Early pharmacokinetic analysis of the clinical trial of this molecule performed on 37 patients orient to define the optimal fixed dosage to use in a triple-negative breast cancer model to validate the therapeutic combination of radiation therapy and NP TSC. Notably, it is reported that this formulation is non-toxic in both humans and mice at the defined fixed concentration, provides a normalization of the tumor vasculature within 72 h window after systemic injection, leads to a transient increase (50% improvement) in the tumor oxygenation, and significantly improves the efficacy of both mono-fractionated and fractionated radiation therapy treatment. Together, these findings support the introduction of a first-in-class therapeutic construct capable of tumor-specific reoxygenation without associated toxicities.


Asunto(s)
Neoplasias , Hipoxia Tumoral , Humanos , Ratones , Animales , Carotenoides , Neoplasias/terapia , Vitamina A/uso terapéutico
5.
Nucleic Acids Res ; 49(10): 5654-5670, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34048565

RESUMEN

Integrons confer a rapid adaptation capability to bacteria. Integron integrases are able to capture and shuffle novel functions embedded in cassettes. Here, we investigated cassette recruitment in the Vibrio cholerae chromosomal integron during horizontal transfer. We demonstrated that the endogenous integrase expression is sufficiently triggered, after SOS response induction mediated by the entry of cassettes during conjugation and natural transformation, to mediate significant cassette insertions. These insertions preferentially occur at the attIA site, despite the presence of about 180 attC sites in the integron array. Thanks to the presence of a promoter in the attIA site vicinity, all these newly inserted cassettes are expressed and prone to selection. We also showed that the RecA protein is critical for cassette recruitment in the V. cholerae chromosomal integron but not in mobile integrons. Moreover, unlike the mobile integron integrases, that of V. cholerae is not active in other bacteria. Mobile integrons might have evolved from the chromosomal ones by overcoming host factors, explaining their large dissemination in bacteria and their role in antibioresistance expansion.


Asunto(s)
Cromosomas/metabolismo , Transferencia de Gen Horizontal/genética , Integrasas/metabolismo , Integrones/genética , Vibrio cholerae/metabolismo , Cromosomas/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Integrasas/genética , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo , Recombinación Genética/genética , Vibrio cholerae/genética
6.
Methods Mol Biol ; 2075: 189-208, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31584164

RESUMEN

Integrons are genetic elements involved in bacterial adaptation to the environment. Sedentary chromosomal integrons (SCIs) can stockpile and rearrange a myriad of different functions encoded in gene cassettes. Through their association with transposable elements and conjugative plasmids, some SCIs have acquired mobility and are now termed Mobile Integrons (MIs). MIs have reached the hospitals and are involved in the rise and spread of antibiotic resistance genes through horizontal gene transfer among numerous bacterial species. Here we aimed at describing methods for the detection of integrons in sequenced bacterial genomes as well as for the experimental characterization of the activity of their different components: the integrase and the recombination sites.


Asunto(s)
Bacterias/genética , Biología Computacional/métodos , Genoma Bacteriano , Integrones , Recombinación Genética , Programas Informáticos , Deleción Cromosómica , Conjugación Genética , Elementos Transponibles de ADN , Transferencia de Gen Horizontal
7.
Nucleic Acids Res ; 44(16): 7792-803, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27496283

RESUMEN

The integron is a bacterial recombination system that allows acquisition, stockpiling and expression of cassettes carrying protein-coding sequences, and is responsible for the emergence and rise of multiresistance in Gram-negative bacteria. The functionality of this system depends on the insertion of promoterless cassettes in correct orientation, allowing their expression from the promoter located upstream of the cassette array. Correct orientation is ensured by strand selectivity of integron integrases for the bottom strand of cassette recombination sites (attC), recombined in form of folded single-stranded hairpins. Here, we investigated the basis of such strand selectivity by comparing recombination of wild-type and mutated attC sites with different lengths, sequences and structures. We show that all three unpaired structural features that distinguish the bottom and top strands contribute to strand selectivity. The localization of Extra-Helical Bases (EHBs) directly favors integrase binding to the bottom strand. The Unpaired Central Spacer (UCS) and the Variable Terminal Structure (VTS) influence strand selectivity indirectly, probably through the stabilization of the bottom strand and the resulting synapse due to the nucleotide skew between the two strands. These results underscore the importance of the single-stranded nature of the attC site that allows such tight control over integron cassette orientation.


Asunto(s)
Sitios de Ligazón Microbiológica/genética , Integrones/genética , Mutagénesis Insercional/genética , Recombinación Genética , Secuencia de Bases , ADN Intergénico , Ensayo de Cambio de Movilidad Electroforética , Modelos Biológicos , Mutación/genética , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...