Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Biology (Basel) ; 13(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38785778

RESUMEN

BACKGROUND: Dysbiosis, influenced by poor diet or stress, is associated with various systemic diseases. Probiotic supplements are recognized for stabilizing gut microbiota and alleviating gastrointestinal issues, like irritable bowel syndrome (IBS). This study focused on the tryptophan pathways, which are important for the regulation of serotonin levels, and on host physiology and behavior regulation. METHODS: Nanovesicles were isolated from the plasma of subjects with chronic diarrhea, both before and after 60 days of consuming a probiotic mix (Acronelle®, Bromatech S.r.l., Milan, Italy). These nanovesicles were assessed for the presence of Tryptophan 2,3-dioxygenase 2 (TDO 2). Furthermore, the probiotics mix, in combination with H2O2, was used to treat HT29 cells to explore its cytoprotective and anti-stress effect. RESULTS: In vivo, levels of TDO 2 in nanovesicles were enhanced in the blood after probiotic treatment, suggesting a role in the gut-brain axis. In the in vitro model, a typical H2O2-induced stress effect occurred, which the probiotics mix was able to recover, showing a cytoprotective effect. The probiotics mix treatment significantly reduced the heat shock protein 60 kDa levels and was able to preserve intestinal integrity and barrier function by restoring the expression and redistribution of tight junction proteins. Moreover, the probiotics mix increased the expression of TDO 2 and serotonin receptors. CONCLUSIONS: This study provides evidence for the gut-brain axis mediation by nanovesicles, influencing central nervous system function.

2.
Cells ; 12(11)2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37296619

RESUMEN

Air pollution has increased over the years, causing a negative impact on society due to the many health-related problems it can contribute to. Although the type and extent of air pollutants are known, the molecular mechanisms underlying the induction of negative effects on the human body remain unclear. Emerging evidence suggests the crucial involvement of different molecular mediators in inflammation and oxidative stress in air pollution-induced disorders. Among these, non-coding RNAs (ncRNAs) carried by extracellular vesicles (EVs) may play an essential role in gene regulation of the cell stress response in pollutant-induced multiorgan disorders. This review highlights EV-transported ncRNAs' roles in physiological and pathological conditions, such as the development of cancer and respiratory, neurodegenerative, and cardiovascular diseases following exposure to various environmental stressors.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Vesículas Extracelulares , Humanos , Contaminación del Aire/efectos adversos , Estrés Fisiológico/genética , ARN no Traducido/genética
3.
Polymers (Basel) ; 15(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36904448

RESUMEN

Sepiolite clay is a natural filler particularly suitable to be used with polysaccharide matrices (e.g., in starch-based bio-nanocomposites), increasing their attractiveness for a wide range of applications, such as packaging. Herein, the effect of the processing (i.e., starch gelatinization, addition of glycerol as plasticizer, casting to obtain films) and of the sepiolite filler amount on the microstructure of starch-based nanocomposites was investigated by SS-NMR (solid-state nuclear magnetic resonance), XRD (X-ray diffraction) and FTIR (Fourier-transform infrared) spectroscopy. Morphology, transparency and thermal stability were then assessed by SEM (scanning electron microscope), TGA (thermogravimetric analysis) and UV-visible spectroscopy. It was demonstrated that the processing method allowed to disrupt the rigid lattice structure of semicrystalline starch and thus obtain amorphous flexible films, with high transparency and good thermal resistance. Moreover, the microstructure of the bio-nanocomposites was found to intrinsically depend on complex interactions among sepiolite, glycerol and starch chains, which are also supposed to affect the final properties of the starch-sepiolite composite materials.

4.
Pediatr Res ; 94(3): 1111-1118, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36959319

RESUMEN

BACKGROUND: In children with an allergy to cow's milk proteins (CMA), the altered composition of intestinal microbiota influences the immune tolerance to milk proteins (CMP). This study aims to investigate the effect of probiotics on the phenotype and activation status of peripheral basophils and lymphocytes in a pediatric CMA cohort. METHODS: CMA children underwent 45 days of treatment with Bifidobacteria. The basophil degranulation and the immune phenotype of B cells, T helper cells, and regulatory T cells were analyzed in peripheral blood at diagnosis (T0), after a 45-day probiotic treatment (T1), and 45 days after the probiotic wash-out (T2). RESULTS: We observed in probiotic-treated CMA patients a decrease in naive T lymphocytes. Among the CD3+ cell subsets, both naive and activated CD4+ cells resulted markedly reduced after taking probiotics, with the lowest percentages at T2. A decreased basophil degranulation was observed in response to all analyzed CMP at T1 compared to T0. CONCLUSIONS: The probiotic treatment resulted in a decrease of circulating naive and activated CD4+ T cells, as well as degranulating basophils. These data suggest that the Bifidobacteria could have a beneficial effect in the modulation of oral tolerance to CMP. TRIAL REGISTRATION: ISRCTN69069358. URL of registration: https://www.isrctn.com/ISRCTN69069358 . IMPACT: Probiotic treatment with Bifidobacteria induces a reduction of both naive and activated circulating CD4+ T cells in pediatric patients with cow's milk allergy (CMA). The probiotic supplementation induces a decreased basophil degranulation. The immunological tolerance persists even after 45 days of the probiotic wash-out. Bifidobacteria in vivo supplementation down-modulates the activation of innate and adaptive immunity in pediatric patients with cow's milk allergy. Bifidobacteria contribute to the development of immune tolerance in CMA patients.


Asunto(s)
Hipersensibilidad a la Leche , Animales , Femenino , Bovinos , Hipersensibilidad a la Leche/terapia , Bifidobacterium , Linfocitos , Proteínas de la Leche , Activación de Linfocitos
5.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768350

RESUMEN

Mutations in genes encoding molecular chaperones, for instance the genes encoding the subunits of the chaperonin CCT (chaperonin containing TCP-1, also known as TRiC), are associated with rare neurodegenerative disorders. Using a classical molecular dynamics approach, we investigated the occurrence of conformational changes and differences in physicochemical properties of the CCT5 mutations His147Arg and Leu224Val associated with a sensory and a motor distal neuropathy, respectively. The apical domain of both variants was substantially but differently affected by the mutations, although these were in other domains. The distribution of hydrogen bonds and electrostatic potentials on the surface of the mutant subunits differed from the wild-type molecule. Structural and dynamic analyses, together with our previous experimental data, suggest that genetic mutations may cause different changes in the protein-binding capacity of CCT5 variants, presumably within both hetero- and/or homo-oligomeric complexes. Further investigations are necessary to elucidate the molecular pathogenic pathways of the two variants that produce the two distinct phenotypes. The data and clinical observations by us and others indicate that CCT chaperonopathies are more frequent than currently believed and should be investigated in patients with neuropathies.


Asunto(s)
Chaperonina con TCP-1 , Chaperonas Moleculares , Simulación de Dinámica Molecular , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/química , Chaperoninas/genética , Chaperoninas/metabolismo , Chaperonas Moleculares/metabolismo , Mutación
6.
Front Mol Biosci ; 9: 887336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720129

RESUMEN

Recognition of diseases associated with mutations of the chaperone system genes, e.g., chaperonopathies, is on the rise. Hereditary and clinical aspects are established, but the impact of the mutation on the chaperone molecule and the mechanisms underpinning the tissue abnormalities are not. Here, histological features of skeletal muscle from a patient with a severe, early onset, distal motor neuropathy, carrying a mutation on the CCT5 subunit (MUT) were examined in comparison with normal muscle (CTR). The MUT muscle was considerably modified; atrophy of fibers and disruption of the tissue architecture were prominent, with many fibers in apoptosis. CCT5 was diversely present in the sarcolemma, cytoplasm, and nuclei in MUT and in CTR and was also in the extracellular space; it colocalized with CCT1. In MUT, the signal of myosin appeared slightly increased, and actin slightly decreased as compared with CTR. Desmin was considerably delocalized in MUT, appearing with abnormal patterns and in precipitates. Alpha-B-crystallin and Hsp90 occurred at lower signals in MUT than in CTR muscle, appearing also in precipitates with desmin. The abnormal features in MUT may be the consequence of inactivity, malnutrition, denervation, and failure of protein homeostasis. The latter could be at least in part caused by malfunction of the CCT complex with the mutant CCT5 subunit. This is suggested by the results of the in silico analyses of the mutant CCT5 molecule, which revealed various abnormalities when compared with the wild-type counterpart, mostly affecting the apical domain and potentially impairing chaperoning functions. Thus, analysis of mutated CCT5 in vitro and in vivo is anticipated to provide additional insights on subunit involvement in neuromuscular disorders.

7.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562951

RESUMEN

Burkholderia cenocepacia is an opportunistic pathogen that can lead to severe infections in patients suffering from cystic fibrosis (CF) and chronic granulomatous disease. Being an obligate aerobe, B. cenocepacia is unable to grow in the absence of oxygen. In this study, we show that the CF isolate B. cenocepacia H111 can survive in the absence of oxygen. Using a transposon sequencing (Tn-seq) approach, we identified 71 fitness determinants involved in anoxic survival, including a Crp-Fnr family transcriptional regulatory gene (anr2), genes coding for the sensor kinase RoxS and its response regulator RoxR, the sigma factor for flagella biosynthesis (FliA) and subunits of a cytochrome bd oxidase (CydA, CydB and the potentially novel subunit CydP). Individual knockouts of these fitness determinants significantly reduced anoxic survival, and inactivation of both anr copies is shown to be lethal under anoxic conditions. We also show that the two-component system RoxS/RoxR and FliA are important for virulence and swarming/swimming, respectively.


Asunto(s)
Infecciones por Burkholderia , Burkholderia cenocepacia , Fibrosis Quística , Burkholderia cenocepacia/fisiología , Humanos , Hipoxia , Oxígeno , Virulencia/genética
8.
Proc Natl Acad Sci U S A ; 119(12): e2113723119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35290120

RESUMEN

Across diverse habitats, bacteria are mainly found as biofilms, surface-attached communities embedded in a self-secreted matrix of extracellular polymeric substances (EPS), which enhance bacterial recalcitrance to antimicrobial treatment and mechanical stresses. In the presence of flow and geometric constraints such as corners or constrictions, biofilms can take the form of long, suspended filaments (streamers), which bear important consequences in industrial and clinical settings by causing clogging and fouling. The formation of streamers is thought to be driven by the viscoelastic nature of the biofilm matrix. Yet, little is known about the structural composition of streamers and how it affects their mechanical properties. Here, using a microfluidic platform that allows growing and precisely examining biofilm streamers, we show that extracellular DNA (eDNA) constitutes the backbone and is essential for the mechanical stability of Pseudomonas aeruginosa streamers. This finding is supported by the observations that DNA-degrading enzymes prevent the formation of streamers and clear already formed ones and that the antibiotic ciprofloxacin promotes their formation by increasing the release of eDNA. Furthermore, using mutants for the production of the exopolysaccharide Pel, an important component of P. aeruginosa EPS, we reveal an concurring role of Pel in tuning the mechanical properties of the streamers. Taken together, these results highlight the importance of eDNA and of its interplay with Pel in determining the mechanical properties of P. aeruginosa streamers and suggest that targeting the composition of streamers can be an effective approach to control the formation of these biofilm structures.


Asunto(s)
Biopelículas , Pseudomonas aeruginosa , Bacterias/genética , ADN Bacteriano/genética , Polisacáridos Bacterianos , Pseudomonas aeruginosa/genética
9.
Materials (Basel) ; 15(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35009485

RESUMEN

Biobased monomers and green processes are key to producing sustainable materials. Cardanol, an aromatic compound obtained from cashew nut shells, may be conveniently functionalized, e.g., with epoxy or (meth)acrylate groups, to replace petroleum-based monomers. Photoinduced polymerization is recognized as a sustainable process, less energy intensive than thermal curing; however, cardanol-based UV-cured polymers have relatively low thermomechanical properties, making them mostly suitable as reactive diluents or in non-structural applications such as coatings. It is therefore convenient to combine them with biobased reinforcements, such as microfibrillated cellulose (MFC), to obtain composites with good mechanical properties. In this work a cardanol-based methacrylate monomer was photopolymerized in the presence of MFC to yield self-standing, flexible, and relatively transparent films with high thermal stability. The polymerization process was completed within few minutes even in the presence of filler, and the cellulosic filler was not affected by the photopolymerization process.

10.
Environ Microbiol ; 24(2): 737-751, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33734565

RESUMEN

Members of the genus Burkholderia show remarkable abilities to adapt to a wide range of environmental conditions and is frequently isolated from soils contaminated with heavy metals. In this study, we used a transposon sequencing approach to identify 138 and 164 genes that provide a benefit for growth of the opportunistic pathogen Burkholderia cenocepacia H111 in the presence of silver and gold ions respectively. The data suggest that arginine metabolism and citrate biosynthesis are important for silver tolerance, while components of an ABC transporter (BCAL0307-BCAL0308) and de novo cysteine biosynthesis are required for tolerance to gold ions. We show that determinants that affect tolerance to both metal ions include the two-component systems BCAL0497/99 and BCAL2830/31 and genes that are involved in maintaining the integrity of the cell envelope, suggesting that membrane proteins represent important targets of silver and gold ions. Furthermore, we show that that the P-type ATPase CadA (BCAL0055), which confers tolerance to cadmium contributes to silver but not gold tolerance. Our results may be useful for improving the antibacterial effect of silver and gold ions to combat drug-resistant pathogens.


Asunto(s)
Burkholderia cenocepacia , Antibacterianos/metabolismo , Antibacterianos/farmacología , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Plata/farmacología
11.
Colloid Polym Sci ; 299(7): 1173-1188, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720334

RESUMEN

Several difunctional oligomers were synthesized by functionalizing perfluoropolyalkylether (PFPAE) chains with different vinyl ethers and epoxides end-groups. Due to their innate synthetic challenges and demanding purification protocols, the PFPAE derivatives were obtained in low yield and with an average functionality lower than 2. However, the functionalized PFPAE oligomers were successful in being used in photo-induced cationic polymerization processes, obtaining transparent and soft films. The influences of the fluorinated chains, and various end-groups on the photopolymerization process were investigated, as well their chemical stability, thermal degradation, and surface properties. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00396-021-04838-1.

12.
Polymers (Basel) ; 13(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34503019

RESUMEN

Phase change materials (PCMs) in the form of fibers or fibrous mats with exceptional thermal energy storage ability and tunable working temperature are of high interest to produce smart thermoregulating textiles, useful for increasing human thermal comfort while avoiding energy waste. Common organic PCMs suffer from instability in their molten state, which limits their applicability as highly performing fibrous systems. In this work, electrospun fibrous mats made of polyethylene oxide (PEO), a PCM with excellent thermal properties and biocompatibility, were fabricated and their shape instability in the molten state was improved through UV photo-crosslinking. The characterization aimed to assess the performance of these shape-stable electrospun mats as nanofibrous PCMs for thermal management applications. In addition to an enhanced resistance to water-based solvents, UV-cured electrospun PEO mats demonstrated a remarkable latent heat (≈112 J/g), maintained over 80 heating/cooling cycles across the phase change temperature. Moreover, their morphological stability above their melting point was demonstrated both macroscopically and microscopically, with the retention of the initial nanofibrous morphology. Tensile mechanical tests demonstrated that the UV crosslinking considerably enhanced the ultimate properties of the fibrous mat, with a five-fold increase in both the tensile strength (from 0.15 MPa to 0.74 MPa) and the strain at break (from 2.5% to 12.2%) compared to the uncrosslinked mat. In conclusion, the photo-crosslinked electrospun PEO material exhibited high thermal properties and good shape stability without displaying leakage; accordingly, in the proposed PCM system, the necessity for encapsulation or use of a supporting layer has been eliminated. Photo-crosslinking thus proved itself as an effective, fast, and environmentally friendly method to dramatically improve the shape-stability of nanofibrous PEO electrospun mats for smart thermoregulating textiles.

13.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34445306

RESUMEN

Epilepsy is a pathologic condition with high prevalence and devastating consequences for the patient and its entourage. Means for accurate diagnosis of type, patient monitoring for predicting seizures and follow up, and efficacious treatment are desperately needed. To improve this adverse outcome, miRNAs and the chaperone system (CS) are promising targets to understand pathogenic mechanisms and for developing theranostics applications. miRNAs implicated in conditions known or suspected to favor seizures such as neuroinflammation, to promote epileptic tolerance and neuronal survival, to regulate seizures, and others showing variations in expression levels related to seizures are promising candidates as useful biomarkers for diagnosis and patient monitoring, and as targets for developing novel therapies. Components of the CS are also promising as biomarkers and as therapeutic targets, since they participate in epileptogenic pathways and in cytoprotective mechanisms in various epileptogenic brain areas, even if what they do and how is not yet clear. The data in this review should help in the identification of molecular targets among the discussed miRNAs and CS components for research aiming at understanding epileptogenic mechanisms and, subsequently, develop means for predicting/preventing seizures and treating the disease.


Asunto(s)
Epilepsia/metabolismo , Proteínas de Choque Térmico/metabolismo , MicroARNs/metabolismo , Animales , Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Epilepsia/patología , Proteínas de Choque Térmico/genética , Humanos , MicroARNs/genética
14.
iScience ; 24(8): 102923, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34430812

RESUMEN

Antibiotic resistance is an increasing threat for public health, underscoring the need for new antibacterial agents. Antimicrobial peptides (AMPs) represent an alternative to classical antibiotics. TAT-RasGAP317-326 is a recently described AMP effective against a broad range of bacteria, but little is known about the conditions that may influence its activity. Using RNA-sequencing and screening of mutant libraries, we show that Escherichia coli and Pseudomonas aeruginosa respond to TAT-RasGAP317-326 by regulating metabolic and stress response pathways, possibly implicating two-component systems. Our results also indicate that bacterial surface properties, in particular integrity of the lipopolysaccharide layer, influence peptide binding and entry. Finally, we found differences between bacterial species with respect to their rate of resistance emergence against this peptide. Our findings provide the basis for future investigation on the mode of action of TAT-RasGAP317-326, which may help developing antimicrobial treatments based on this peptide.

15.
Polymers (Basel) ; 13(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34301050

RESUMEN

Photoinduced processes have gained considerable attention in polymer science and have greatly implemented the technological developments of new products. Therefore, a large amount of research work is currently developed in this area: in this paper we illustrate the advantages of a chemistry driven by light, the present perspectives of the technology, and summarize some of our recent research works, honoring the memory of Prof. Aldo Priola who passed away in March 2021 and was one of the first scientists in Italy to contribute to the field.

16.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919591

RESUMEN

Thyroid cancers are the most common of the endocrine system malignancies and progress must be made in the areas of differential diagnosis and treatment to improve patient management. Advances in the understanding of carcinogenic mechanisms have occurred in various fronts, including studies of the chaperone system (CS). Components of the CS are found to be quantitatively increased or decreased, and some correlations have been established between the quantitative changes and tumor type, prognosis, and response to treatment. These correlations provide the basis for identifying distinctive patterns useful in differential diagnosis and for planning experiments aiming at elucidating the role of the CS in tumorigenesis. Here, we discuss studies of the CS components in various thyroid cancers (TC). The chaperones belonging to the families of the small heat-shock proteins Hsp70 and Hsp90 and the chaperonin of Group I, Hsp60, have been quantified mostly by immunohistochemistry and Western blot in tumor and normal control tissues and in extracellular vesicles. Distinctive differences were revealed between the various thyroid tumor types. The most frequent finding was an increase in the chaperones, which can be attributed to the augmented need for chaperones the tumor cells have because of their accelerated metabolism, growth, and division rate. Thus, chaperones help the tumor cell rather than protect the patient, exemplifying chaperonopathies by mistake or collaborationism. This highlights the need for research on chaperonotherapy, namely the development of means to eliminate/inhibit pathogenic chaperones.


Asunto(s)
Chaperonas Moleculares/metabolismo , Neoplasias de la Tiroides/metabolismo , Animales , Chaperonina 60/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos
17.
Clin Epigenetics ; 13(1): 81, 2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33865442

RESUMEN

Eosinophilic esophagitis (EoE) is a leading cause of dysphagia and food impaction in children and adults. The diagnosis relies on histological examination of esophageal mucosal biopsies and requires the presence of > 15 eosinophils per high-powered field. Potential pitfalls include the impact of biopsy sectioning as well as regional variations of eosinophil density. We performed genome-wide DNA methylation analyses on 30 esophageal biopsies obtained from children diagnosed with EoE (n = 7) and matched controls (n = 13) at the time of diagnosis as well as following first-line treatment. Analyses revealed striking disease-associated differences in mucosal DNA methylation profiles in children diagnosed with EoE, highlighting the potential for these epigenetic signatures to be developed into clinically applicable biomarkers.


Asunto(s)
Metilación de ADN/genética , Esofagitis Eosinofílica/genética , Esofagitis Eosinofílica/patología , Estudio de Asociación del Genoma Completo/métodos , Adolescente , Biopsia , Niño , Preescolar , Esófago/patología , Femenino , Humanos , Italia , Masculino , Estudios Prospectivos
18.
Food Funct ; 12(7): 3083-3095, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33720221

RESUMEN

In the last few years, there has been emerging interest in developing treatments against human diseases using natural bioactive content. Here, the powder of the edible mushroom Pleurotus eryngii var. eryngii was mixed with the normal diet of mice bearing C26 colon carcinoma. Interestingly, it was evidenced by a significant increase in the survival rate of C26 tumor-bearing mice accompanied by a significant increase in Hsp90 and Hsp27 protein levels in the tumors. These data were paralleled by a decrease in Hsp60 levels. The mushroom introduced in the diet induced the inhibition of the transcription of the pro-inflammatory cytokines IL-6 and IL-1 exerting an anti-inflammatory action. The effects of the mushroom were mediated by the activation of c-Jun NH2-terminal kinases as a result of metabolic stress induced by the micronutrients introduced in the diet. In the tumors of C26 bearing mice fed with Pleurotus eryngii there was also a decreased expression of the mitotic regulator survivin and the anti-apoptotic factor Bcl-xL as well as an increase in the expression levels of Atg7, a protein that drives autophagy. In our hypothesis the interplay of these molecules favored the survival of the mice fed with the mushroom. These data are promising for the introduction of Pleurotus eryngii as a dietary supplement or as an adjuvant in anti-cancer therapy.


Asunto(s)
Neoplasias del Colon/dietoterapia , Pleurotus , Animales , Suplementos Dietéticos , Modelos Animales de Enfermedad , Femenino , Respuesta al Choque Térmico/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Fitoterapia
19.
Colloid Polym Sci ; 299(3): 509-521, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33785978

RESUMEN

New perfluoropolyalkylether (PFPAE) monomers, chain extended with different alkyl groups and functionalized with vinyl ether or epoxide end-groups, were employed, together with trimethylolpropane trivinyl ether or trimethylolpropane triglycidyl ether, to produce fluorinated copolymers. The photoinduced cationic polymerization was investigated, and the PFPAE-based copolymer properties were thoroughly characterized. Interesting surface properties and two different values of refractive index were observed: thus, these fluorinated copolymers can be suitable materials for the manufacture of self-cleaning coatings and optical waveguides.

20.
Nanomaterials (Basel) ; 11(1)2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406608

RESUMEN

We report on the preparation and stereolithographic 3D printing of a resin based on the composite between a poly(ethylene glycol) diacrylate (PEGDA) host matrix and a poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) filler, and the related cumulative volatile organic compounds' (VOCs) adsorbent properties. The control of all the steps for resin preparation and printing through morphological (SEM), structural (Raman spectroscopy) and functional (I/V measurements) characterizations allowed us to obtain conductive 3D objects of complex and reproducible geometry. These systems can interact with chemical vapors in the long term by providing a consistent and detectable variation of their structural and conductive characteristics. The materials and the manufacture protocol here reported thus propose an innovative and versatile technology for VOCs monitoring systems based on cumulative adsorption effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...