Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Biomed Pharmacother ; 156: 113844, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36252359

RESUMEN

The 2-pentadecyl-2-oxazoline (PEA-OXA) is a natural compound with protective action in neuro-inflammation. We have previously shown that PEA-OXA behaves as an α2 adrenergic receptor (α2AR) antagonist and a putative protean agonist on histamine H3 receptors. Recently, neuroinflammation and monoaminergic neurotransmission dysfunction has drawn particular attention in Alzheimer Disease (AD) pathophysiology. In this context, the objective of this study was to investigate the effects of the dual-acting PEA-OXA in an AD-like model in mice. A combined computational and experimental approach was used to evaluate the ability of PEA-OXA to bind α2A-AR subtype, and to investigate the effects of PEA-OXA treatment on neuropathological (behavioural and functional) effects induced by soluble Amyloid ß 1-42 (sAß1-42) intracerebroventricular injection. Computational analysis revealed the PEA-OXA ability to bind the α2A-AR, a pharmacological target for AD, in two alternative poses, one overlapping the Na+ binding site. In vivo studies indicated that chronic treatment with PEA-OXA (10 mg/kg, os) restored the cognitive (discriminative and spatial memory) deficits and social impairments induced by sAß injection. Consistently, electrophysiological analysis showed a recovery of the long-term potentiation in the hippocampus (Lateral Entorhinal Cortex-Dentate Gyrus pathway), while neuroinflammation, i.e., increased pro-inflammatory cytokines levels and microglia cells density were reduced. These data provide the basis for further investigation of the pro-cognitive aptitude of PEA-OXA by proposing it as an adjuvant in the treatment in AD, for which the available pharmacological approaches remain unsatisfactory. Moreover, this study offers new future direction in research investigating the role of α2AR in neuropsychiatric illness and therapies.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Ratones , Animales , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/prevención & control , Receptores Adrenérgicos alfa 2 , Modelos Animales de Enfermedad , Conducta Social , Cognición
3.
J Pept Res ; 57(4): 307-15, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11328488

RESUMEN

Two complete series of N-protected oligopeptide esters to the pentamer level from 1-amino-cyclodecane-1-carboxylic acid (Ac10c), an alpha-amino acid conformationally constrained through a medium-ring Calphai <--> Calphai cyclization, and either the L-Ala or Aib residue, along with the N-protected Ac10c monomer and homo-dimer alkylamides, were synthesized using solution methods and fully characterized. The preferred conformation of these model peptides was assessed in deuterochloroform solution using FT-IR absorption and 1H NMR techniques. Furthermore, the molecular structures of two derivatives (Z-Ac10c-OH and Fmoc-Ac10c-OH) and two peptides (the dipeptide ester Z-Ac10c-L-Phe-OMe and the tripeptide ester Z-Aib-Ac10c-Aib-OtBu) were determined in the crystal state using X-ray diffraction. The experimental results support the view that beta-bends and 3(10)-helices are preferentially adopted by peptides rich in Ac10c, the third largest cycloaliphatic C(alpha,alpha)-disubstituted glycine known. This investigation allowed us to complete a detailed conformational analysis of the whole 1-amino-cycloalkane-1-carboxylic acid (Ac(n)c, with n = 3-12) series, which represents the prerequisite for our recent proposal of the 'Ac(n)c scan' concept.


Asunto(s)
Glicina/química , Oligopéptidos/síntesis química , Conformación Proteica , Soluciones/química , Cristalografía por Rayos X , Ciclización , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Oligopéptidos/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA