Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 16: 889211, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685770

RESUMEN

Sleep disruption is a challenging and exceedingly common physiological state that contributes to a wide range of biochemical and molecular perturbations and has been linked to numerous adverse health outcomes. Modern society exerts significant pressure on the sleep/wake cycle via myriad factors, including exposure to electric light, psychological stressors, technological interconnection, jet travel, shift work, and widespread use of sleep-affecting compounds. Interestingly, recent research has identified a link between the microbiome and the regulation of sleep, suggesting that interventions targeting the microbiome may offer unique therapeutic approaches to challenges posed by sleep disruption. In this study, we test the hypothesis that administration of a prebiotic diet containing galactooligosaccharides (GOS) and polydextrose (PDX) in adult male rats improves sleep in response to repeated sleep disruption and during recovery sleep. We found that animals fed the GOS/PDX prebiotic diet for 4 weeks exhibit increased non-rapid eye movement (NREM) and rapid eye movement (REM) sleep during 5 days of sleep disruption and increased total sleep time during 24 h of recovery from sleep disruption compared to animals fed a control diet, despite similar baseline sleep characteristics. Further, the GOS/PDX prebiotic diet led to significant changes in the fecal microbiome. Consistent with previous reports, the prebiotic diet increased the relative abundance of the species Parabacteroides distasonis, which positively correlated with sleep parameters during recovery sleep. Taken together, these findings suggest that the GOS/PDX prebiotic diet may offer an approach to improve resilience to the physiologic challenge of sleep disruption, in part through impacts on the microbiome.

2.
Eur J Neurosci ; 55(9-10): 2939-2954, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34514665

RESUMEN

Affective behaviours and mental health are profoundly affected by disturbances in circadian rhythms. Casein kinase 1 epsilon (CSNK1E) is a core component of the circadian clock. Mice with tau or null mutation of this gene have shortened and lengthened circadian period respectively. Here, we examined anxiety-like, fear, and despair behaviours in both male and female mice of these two different mutants. Compared with wild-type mice, we found reductions in fear and anxiety-like behaviours in both mutant lines and in both sexes, with the tau mutants exhibiting the greatest phenotypic changes. However, the behavioural despair had distinct phenotypic patterns, with markedly less behavioural despair in female null mutants, but not in tau mutants of either sex. To determine whether abnormal light entrainment of tau mutants to 24-h light-dark cycles contributes to these phenotypic differences, we also examined these behaviours in tau mutants on a 20-h light-dark cycle close to their endogenous circadian period. The normalized entrainment restored more wild-type-like behaviours for fear and anxiety, but it induced behavioural despair in tau mutant females. These data show that both mutations of Csnk1e broadly affect fear and anxiety-like behaviours, while the effects on behavioural despair vary with genetics, photoperiod, and sex, suggesting that the mechanisms by which Csnk1e affects fear and anxiety-like behaviours may be similar, but distinct from those affecting behavioural despair. Our study also provides experimental evidence in support of the hypothesis of beneficial outcomes from properly entrained circadian rhythms in terms of the anxiety-like and fear behaviours.


Asunto(s)
Caseína Cinasa 1 épsilon , Relojes Circadianos , Animales , Caseína Cinasa 1 épsilon/genética , Ritmo Circadiano/genética , Femenino , Masculino , Ratones , Actividad Motora , Fotoperiodo
3.
Sci Rep ; 11(1): 7797, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833255

RESUMEN

Reduced NREM sleep in humans is associated with AD neuropathology. Recent work has demonstrated a reduction in NREM sleep in preclinical AD, pointing to its potential utility as an early marker of dementia. We test the hypothesis that reduced NREM delta power and increased tauopathy are associated with shared underlying cortical molecular networks in preclinical AD. We integrate multi-omics data from two extensive public resources, a human Alzheimer's disease cohort from the Mount Sinai Brain Bank (N = 125) reflecting AD progression and a (C57BL/6J × 129S1/SvImJ) F2 mouse population in which NREM delta power was measured (N = 98). Two cortical gene networks, including a CLOCK-dependent circadian network, are associated with NREM delta power and AD tauopathy progression. These networks were validated in independent mouse and human cohorts. Identifying gene networks related to preclinical AD elucidate possible mechanisms associated with the early disease phase and potential targets to alter the disease course.


Asunto(s)
Enfermedad de Alzheimer/patología , Corteza Cerebelosa/metabolismo , Redes Reguladoras de Genes , Trastornos del Sueño-Vigilia/patología , Animales , Estudios de Cohortes , Humanos , Ratones , Ratones Endogámicos C57BL
4.
Sleep ; 44(6)2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33283862

RESUMEN

STUDY OBJECTIVES: Sleep deprivation induces systemic inflammation that may contribute to stress vulnerability and other pathologies. We tested the hypothesis that immunization with heat-killed Mycobacterium vaccae NCTC 11659 (MV), an environmental bacterium with immunoregulatory and anti-inflammatory properties, prevents the negative impacts of 5 days of sleep disruption on stress-induced changes in sleep, behavior, and physiology in mice. METHODS: In a 2 × 2 × 2 experimental design, male C57BL/6N mice were given injections of either MV or vehicle on days -17, -10, and -3. On days 1-5, mice were exposed to intermittent sleep disruption, whereby sleep was disrupted for 20 h per day. Immediately following sleep disruption, mice were exposed to 1-h social defeat stress or novel cage (control) conditions. Object location memory (OLM) testing was conducted 24 h after social defeat, and tissues were collected 6 days later to measure inflammatory markers. Sleep was recorded using electroencephalography (EEG) and electromyography (EMG) throughout the experiment. RESULTS: In vehicle-treated mice, only the combination of sleep disruption followed by social defeat (double hit): (1) increased brief arousals and NREM beta (15-30 Hz) EEG power in sleep immediately post-social defeat compared to baseline; (2) induced an increase in the proportion of rapid-eye-movement (REM) sleep and number of state shifts for at least 5 days post-social defeat; and (3) induced hyperlocomotion and lack of habituation in the OLM task. Immunization with MV prevented most of these sleep and behavioral changes. CONCLUSIONS: Immunization with MV ameliorates a stress-induced sleep and behavioral phenotype that shares features with human posttraumatic stress disorder.


Asunto(s)
Mycobacterium , Trastornos por Estrés Postraumático , Animales , Nivel de Alerta , Electroencefalografía , Calor , Inmunización , Masculino , Ratones , Ratones Endogámicos C57BL , Mycobacteriaceae , Fenotipo , Sueño
5.
PLoS One ; 15(2): e0229001, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32078624

RESUMEN

It has been established in recent years that the gut microbiome plays a role in health and disease, potentially via alterations in metabolites that influence host physiology. Although sleep disruption and gut dysbiosis have been associated with many of the same diseases, studies investigating the gut microbiome in the context of sleep disruption have yielded inconsistent results, and have not assessed the fecal metabolome. We exposed mice to five days of sleep disruption followed by four days of ad libitum recovery sleep, and assessed the fecal microbiome and fecal metabolome at multiple timepoints using 16S rRNA gene amplicons and untargeted LC-MS/MS mass spectrometry. We found global shifts in both the microbiome and metabolome in the sleep-disrupted group on the second day of recovery sleep, when most sleep parameters had recovered to baseline levels. We observed an increase in the Firmicutes:Bacteroidetes ratio, along with decreases in the genus Lactobacillus, phylum Actinobacteria, and genus Bifidobacterium in sleep-disrupted mice compared to control mice. The latter two taxa remained low at the fourth day post-sleep disruption. We also identified multiple classes of fecal metabolites that were differentially abundant in sleep-disrupted mice, some of which are physiologically relevant and commonly influenced by the microbiome. This included bile acids, and inference of microbial functional gene content suggested reduced levels of the microbial bile salt hydrolase gene in sleep-disrupted mice. Overall, this study adds to the evidence base linking disrupted sleep to the gut microbiome and expands it to the fecal metabolome, identifying sleep disruption-sensitive bacterial taxa and classes of metabolites that may serve as therapeutic targets to improve health after poor sleep.


Asunto(s)
Bacterias , Heces/microbiología , Microbioma Gastrointestinal , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Privación de Sueño/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Masculino , Ratones
6.
Front Physiol ; 11: 524833, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33469429

RESUMEN

Previous studies demonstrate that Mycobacterium vaccae NCTC 11659 (M. vaccae), a soil-derived bacterium with anti-inflammatory and immunoregulatory properties, is a potentially useful countermeasure against negative outcomes to stressors. Here we used male C57BL/6NCrl mice to determine if repeated immunization with M. vaccae is an effective countermeasure in a "two hit" stress exposure model of chronic disruption of rhythms (CDR) followed by acute social defeat (SD). On day -28, mice received implants of biotelemetric recording devices to monitor 24-h rhythms of locomotor activity. Mice were subsequently treated with a heat-killed preparation of M. vaccae (0.1 mg, administered subcutaneously on days -21, -14, -7, and 27) or borate-buffered saline vehicle. Mice were then exposed to 8 consecutive weeks of either stable normal 12:12 h light:dark (LD) conditions or CDR, consisting of 12-h reversals of the LD cycle every 7 days (days 0-56). Finally, mice were exposed to either a 10-min SD or a home cage control condition on day 54. All mice were exposed to object location memory testing 24 h following SD. The gut microbiome and metabolome were assessed in fecal samples collected on days -1, 48, and 62 using 16S rRNA gene sequence and LC-MS/MS spectral data, respectively; the plasma metabolome was additionally measured on day 64. Among mice exposed to normal LD conditions, immunization with M. vaccae induced a shift toward a more proactive behavioral coping response to SD as measured by increases in scouting and avoiding an approaching male CD-1 aggressor, and decreases in submissive upright defensive postures. In the object location memory test, exposure to SD increased cognitive function in CDR mice previously immunized with M. vaccae. Immunization with M. vaccae stabilized the gut microbiome, attenuating CDR-induced reductions in alpha diversity and decreasing within-group measures of beta diversity. Immunization with M. vaccae also increased the relative abundance of 1-heptadecanoyl-sn-glycero-3-phosphocholine, a lysophospholipid, in plasma. Together, these data support the hypothesis that immunization with M. vaccae stabilizes the gut microbiome, induces a shift toward a more proactive response to stress exposure, and promotes stress resilience.

7.
Sleep ; 42(10)2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31504971

RESUMEN

STUDY OBJECTIVES: The present studies examine the effects of NMDAR activation by NYX-2925 diurnal rhythmicity of both sleep and wake as well as emotion. METHODS: Twenty-four-hour sleep EEG recordings were obtained in sleep-deprived and non-sleep-deprived rats. In addition, the day-night cycle of both activity and mood was measured using home cage ultrasonic-vocalization recordings. RESULTS: NYX-2925 significantly facilitated non-REM (NREM) sleep during the lights-on (sleep) period, and this effect persisted for 3 days following a single dose in sleep-deprived rats. Sleep-bout duration and REM latencies were increased without affecting total REM sleep, suggesting better sleep quality. In addition, delta power during wake was decreased, suggesting less drowsiness. NYX-2925 also rescued learning and memory deficits induced by sleep deprivation, measured using an NMDAR-dependent learning task. Additionally, NYX-2925 increased positive affect and decreased negative affect, primarily by facilitating the transitions from sleep to rough-and-tumble play and back to sleep. In contrast to NYX-2925, the NMDAR antagonist ketamine acutely (1-4 hours post-dosing) suppressed REM and non-REM sleep, increased delta power during wake, and blunted the amplitude of the sleep-wake activity rhythm. DISCUSSION: These data suggest that NYX-2925 could enhance behavioral plasticity via improved sleep quality as well as vigilance during wake. As such, the facilitation of sleep by NYX-2925 has the potential to both reduce symptom burden on neurological and psychiatric disorders as well as serve as a biomarker for drug effects through restoration of sleep architecture.


Asunto(s)
Afecto/fisiología , Ritmo Circadiano/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Privación de Sueño/fisiopatología , Sueño/fisiología , Compuestos de Espiro/farmacología , Afecto/efectos de los fármacos , Animales , Ritmo Circadiano/efectos de los fármacos , Electroencefalografía/métodos , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas , Sueño/efectos de los fármacos , Privación de Sueño/tratamiento farmacológico , Compuestos de Espiro/uso terapéutico , Vigilia/efectos de los fármacos , Vigilia/fisiología
8.
Sleep ; 42(8)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31070769

RESUMEN

STUDY OBJECTIVES: Determine stability of individual differences in executive function, cognitive processing speed, selective visual attention, and maintenance of wakefulness during simulated sustained operations with combined sleep restriction and circadian misalignment. METHODS: Twenty healthy adults (eight female), aged 25.7 (±4.2 SD), body mass index (BMI) 22.3 (±2.1) kg/m2 completed an 18-day protocol twice. Participants maintained habitual self-selected 8-hour sleep schedules for 2 weeks at home prior to a 4-day laboratory visit that included one sleep opportunity per day: 8 hours on night 1, 3 hours on night 2, and 3 hours on mornings 3 and 4. After 3 days of unscheduled sleep at home, participants repeated the entire protocol. Stability and task dependency of individual differences in performance were quantified by intra-class correlation coefficients (ICC) and Kendall's Tau, respectively. RESULTS: Performance on Stroop, Visual Search, and the Maintenance of Wakefulness Test were highly consistent within individuals during combined sleep restriction and circadian misalignment. Individual differences were trait-like as indicated by ICCs (0.54-0.96) classified according to standard criteria as moderate to almost perfect. Individual differences on other performance tasks commonly reported in sleep studies showed fair to almost perfect ICCs (0.22-0.94). Kendall's rank correlations showed that individual vulnerability to sleep restriction and circadian misalignment varied by task and by metric within a task. CONCLUSIONS: Consistent vulnerability of higher-order cognition and maintenance of wakefulness to combined sleep restriction and circadian misalignment has implications for the development of precision countermeasure strategies for workers performing safety-critical tasks, e.g. military, police, health care workers and emergency responders.


Asunto(s)
Ritmo Circadiano/fisiología , Cognición/fisiología , Desempeño Psicomotor/fisiología , Privación de Sueño/fisiopatología , Trastornos del Sueño del Ritmo Circadiano/fisiopatología , Adulto , Atención/fisiología , Función Ejecutiva/fisiología , Femenino , Humanos , Individualidad , Masculino , Polisomnografía , Sueño/fisiología , Análisis y Desempeño de Tareas , Vigilia/fisiología
9.
Sci Adv ; 4(7): eaat1294, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30050989

RESUMEN

To understand the transcriptomic organization underlying sleep and affective function, we studied a population of (C57BL/6J × 129S1/SvImJ) F2 mice by measuring 283 affective and sleep phenotypes and profiling gene expression across four brain regions. We identified converging molecular bases for sleep and affective phenotypes at both the single-gene and gene-network levels. Using publicly available transcriptomic datasets collected from sleep-deprived mice and patients with major depressive disorder (MDD), we identified three cortical gene networks altered by the sleep/wake state and depression. The network-level actions of sleep loss and depression were opposite to each other, providing a mechanistic basis for the sleep disruptions commonly observed in depression, as well as the reported acute antidepressant effects of sleep deprivation. We highlight one particular network composed of circadian rhythm regulators and neuronal activity-dependent immediate-early genes. The key upstream driver of this network, Arc, may act as a nexus linking sleep and depression. Our data provide mechanistic insights into the role of sleep in affective function and MDD.


Asunto(s)
Trastorno Depresivo Mayor/patología , Redes Reguladoras de Genes , Privación de Sueño/patología , Animales , Antidepresivos/uso terapéutico , Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Ritmo Circadiano/genética , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Modelos Animales de Enfermedad , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Sitios de Carácter Cuantitativo , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/genética , Transcriptoma
10.
PLoS Genet ; 12(7): e1006137, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27390852

RESUMEN

Recent systems-based analyses have demonstrated that sleep and stress traits emerge from shared genetic and transcriptional networks, and clinical work has elucidated the emergence of sleep dysfunction and stress susceptibility as early symptoms of Huntington's disease. Understanding the biological bases of these early non-motor symptoms may reveal therapeutic targets that prevent disease onset or slow disease progression, but the molecular mechanisms underlying this complex clinical presentation remain largely unknown. In the present work, we specifically examine the relationship between these psychiatric traits and Huntington's disease (HD) by identifying striatal transcriptional networks shared by HD, stress, and sleep phenotypes. First, we utilize a systems-based approach to examine a large publicly available human transcriptomic dataset for HD (GSE3790 from GEO) in a novel way. We use weighted gene coexpression network analysis and differential connectivity analyses to identify transcriptional networks dysregulated in HD, and we use an unbiased ranking scheme that leverages both gene- and network-level information to identify a novel astrocyte-specific network as most relevant to HD caudate. We validate this result in an independent HD cohort. Next, we computationally predict FOXO3 as a regulator of this network, and use multiple publicly available in vitro and in vivo experimental datasets to validate that this astrocyte HD network is downstream of a signaling pathway important in adult neurogenesis (TGFß-FOXO3). We also map this HD-relevant caudate subnetwork to striatal transcriptional networks in a large (n = 100) chronically stressed (B6xA/J)F2 mouse population that has been extensively phenotyped (328 stress- and sleep-related measurements), and we show that this striatal astrocyte network is correlated to sleep and stress traits, many of which are known to be altered in HD cohorts. We identify causal regulators of this network through Bayesian network analysis, and we highlight their relevance to motor, mood, and sleep traits through multiple in silico approaches, including an examination of their protein binding partners. Finally, we show that these causal regulators may be therapeutically viable for HD because their downstream network was partially modulated by deep brain stimulation of the subthalamic nucleus, a medical intervention thought to confer some therapeutic benefit to HD patients. In conclusion, we show that an astrocyte transcriptional network is primarily associated to HD in the caudate and provide evidence for its relationship to molecular mechanisms of neural stem cell homeostasis. Furthermore, we present a unified systems-based framework for identifying gene networks that are associated with complex non-motor traits that manifest in the earliest phases of HD. By analyzing and integrating multiple independent datasets, we identify a point of molecular convergence between sleep, stress, and HD that reflects their phenotypic comorbidity and reveals a molecular pathway involved in HD progression.


Asunto(s)
Astrocitos/metabolismo , Proteína Forkhead Box O3/genética , Enfermedad de Huntington/genética , Estrés Psicológico/genética , Factor de Crecimiento Transformador beta/genética , Animales , Astrocitos/patología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiopatología , Proteína Forkhead Box O3/biosíntesis , Redes Reguladoras de Genes , Humanos , Enfermedad de Huntington/fisiopatología , Ratones , Red Nerviosa/metabolismo , Red Nerviosa/patología , Neurogénesis/genética , Transducción de Señal , Sueño/genética , Estrés Psicológico/metabolismo , Transcriptoma/genética , Factor de Crecimiento Transformador beta/biosíntesis
11.
Behav Neurosci ; 130(4): 448-59, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27254754

RESUMEN

The etiology of abnormal eating behaviors, including binge-eating disorder, is poorly understood. The neural circuits modulating the activities of the neurotransmitters dopamine and serotonin are proposed to be dysfunctional in individuals suffering from eating disorders. Prader-Willi syndrome is a neurodevelopmental disorder that causes extreme food seeking and binge-eating behaviors together with reduced satiety. One of the genes implicated in Prader-Willi syndrome, Magel2, is highly expressed in the regions of the brain that control appetite. Our objective was to examine behaviors relevant to feeding and the neural circuits controlling feeding in a mouse model of Prader-Willi syndrome that lacks expression of the Magel2 gene. We performed behavioral tests related to dopaminergic function, measuring cocaine-induced hyperlocomotion, binge eating, and saccharin-induced anhedonia in Magel2-deficient mice. Next, we analyzed dopaminergic neurons in various brain regions and compared these findings between genotypes. Finally, we examined biochemical markers in the brain under standard diet, high-fat diet, and withdrawal from a high-fat diet conditions. We identified abnormal behaviors and biomarkers reflecting dopaminergic dysfunction in mice lacking Magel2. Our results provide a biological framework for clinical studies of dopaminergic function in children with Prader-Willi syndrome, and may also provide insight into binge-eating disorders that occur in the general population. (PsycINFO Database Record


Asunto(s)
Antígenos de Neoplasias/genética , Modelos Animales de Enfermedad , Dopamina/genética , Síndrome de Prader-Willi/genética , Proteínas/genética , Animales , Trastorno por Atracón/fisiopatología , Encéfalo/metabolismo , Dieta Alta en Grasa , Dopamina/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Serotonina/metabolismo
12.
Genet Res Int ; 2016: 4973242, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27144030

RESUMEN

Disruption of circadian rhythms results in metabolic dysfunction. Casein kinase 1 epsilon (CK1ε) is a canonical circadian clock gene. Null and tau mutations in CK1ε show distinct effects on circadian period. To investigate the role of CK1ε in body weight regulation under both regular chow (RC) and high fat (HF) diet conditions, we examined body weight on both RC and HF diets in CK1ε (-/-) and CK1ε (tau/tau) mice on a standard 24 hr light-dark (LD) cycle. Given the abnormal entrainment of CK1ε (tau/tau) mice on a 24 hr LD cycle, a separate set of CK1ε (tau/tau) mice were tested under both diet conditions on a 20 hr LD cycle, which more closely matches their endogenous period length. On the RC diet, both CK1ε (-/-) and CK1ε (tau/tau) mutants on a 24 hr LD cycle and CK1ε (tau/tau) mice on a 20 hr LD cycle exhibited significantly lower body weights, despite similar overall food intake and activity levels. On the HF diet, CK1ε (tau/tau) mice on a 20 hr LD cycle were protected against the development of HF diet-induced excess weight gain. These results provide additional evidence supporting a link between circadian rhythms and energy regulation at the genetic level, particularly highlighting CK1ε involved in the integration of circadian biology and metabolic physiology.

13.
Alcohol Clin Exp Res ; 40(2): 335-47, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26842252

RESUMEN

BACKGROUND: Circadian rhythm disruption is a prevalent feature of modern day society that is associated with an increase in pro-inflammatory diseases, and there is a clear need for a better understanding of the mechanism(s) underlying this phenomenon. We have previously demonstrated that both environmental and genetic circadian rhythm disruption causes intestinal hyperpermeability and exacerbates alcohol-induced intestinal hyperpermeability and liver pathology. The intestinal microbiota can influence intestinal barrier integrity and impact immune system function; thus, in this study, we sought to determine whether genetic alteration of the core circadian clock gene, Clock, altered the intestinal microbiota community. METHODS: Male Clock(Δ19) -mutant mice (mice homozygous for a dominant-negative-mutant allele) or littermate wild-type mice were fed 1 of 3 experimental diets: (i) a standard chow diet, (ii) an alcohol-containing diet, or (iii) an alcohol-control diet in which the alcohol calories were replaced with dextrose. Stool microbiota was assessed with 16S ribosomal RNA gene amplicon sequencing. RESULTS: The fecal microbial community of Clock-mutant mice had lower taxonomic diversity, relative to wild-type mice, and the Clock(Δ19) mutation was associated with intestinal dysbiosis when mice were fed either the alcohol-containing or the control diet. We found that alcohol consumption significantly altered the intestinal microbiota in both wild-type and Clock-mutant mice. CONCLUSIONS: Our data support a model by which circadian rhythm disruption by the Clock(Δ19) mutation perturbs normal intestinal microbial communities, and this trend was exacerbated in the context of a secondary dietary intestinal stressor.


Asunto(s)
Relojes Circadianos/genética , Disbiosis/genética , Microbioma Gastrointestinal , Animales , Proteínas CLOCK/genética , Proteínas CLOCK/fisiología , Relojes Circadianos/fisiología , Disbiosis/fisiopatología , Etanol/farmacología , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , ARN Ribosómico 16S
14.
Alcohol Clin Exp Res ; 39(10): 1917-29, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26332085

RESUMEN

BACKGROUND: Chronic alcohol exposure exerts numerous adverse effects, although the specific mechanisms underlying these negative effects on different tissues are not completely understood. Alcohol also affects core properties of the circadian clock system, and it has been shown that disruption of circadian rhythms confers vulnerability to alcohol-induced pathology of the gastrointestinal barrier and liver. Despite these findings, little is known of the molecular interactions between alcohol and the circadian clock system, especially regarding implications for tissue-specific susceptibility to alcohol pathologies. The aim of this study was to identify changes in expression of genes relevant to alcohol pathologies and circadian clock function in different tissues in response to chronic alcohol intake. METHODS: Wild-type and circadian Clock(Δ19) mutant mice were subjected to a 10-week chronic alcohol protocol, after which hippocampal, liver, and proximal colon tissues were harvested for gene expression analysis using a custom-designed multiplex magnetic bead hybridization assay that provided quantitative assessment of 80 mRNA targets of interest, including 5 housekeeping genes and a predetermined set of 75 genes relevant for alcohol pathology and circadian clock function. RESULTS: Significant alterations in expression levels attributable to genotype, alcohol, and/or a genotype by alcohol interaction were observed in all 3 tissues, with distinct patterns of expression changes observed in each. Of particular interest was the finding that a high proportion of genes involved in inflammation and metabolism on the array was significantly affected by alcohol and the Clock(Δ19) mutation in the hippocampus, suggesting a suite of molecular changes that may contribute to pathological change. CONCLUSIONS: These results reveal the tissue-specific nature of gene expression responses to chronic alcohol exposure and the Clock(Δ19) mutation and identify specific expression profiles that may contribute to tissue-specific vulnerability to alcohol-induced injury in the brain, colon, and liver.


Asunto(s)
Proteínas CLOCK/genética , Colon/metabolismo , Etanol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hígado/metabolismo , Animales , Colon/efectos de los fármacos , Etanol/administración & dosificación , Hígado/efectos de los fármacos , Masculino , Ratones , Mutación , Especificidad de Órganos/efectos de los fármacos
15.
Cell Rep ; 11(5): 835-48, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25921536

RESUMEN

Sleep dysfunction and stress susceptibility are comorbid complex traits that often precede and predispose patients to a variety of neuropsychiatric diseases. Here, we demonstrate multilevel organizations of genetic landscape, candidate genes, and molecular networks associated with 328 stress and sleep traits in a chronically stressed population of 338 (C57BL/6J × A/J) F2 mice. We constructed striatal gene co-expression networks, revealing functionally and cell-type-specific gene co-regulations important for stress and sleep. Using a composite ranking system, we identified network modules most relevant for 15 independent phenotypic categories, highlighting a mitochondria/synaptic module that links sleep and stress. The key network regulators of this module are overrepresented with genes implicated in neuropsychiatric diseases. Our work suggests that the interplay among sleep, stress, and neuropathology emerges from genetic influences on gene expression and their collective organization through complex molecular networks, providing a framework for interrogating the mechanisms underlying sleep, stress susceptibility, and related neuropsychiatric disorders.


Asunto(s)
Sueño , Estrés Psicológico , Animales , Teorema de Bayes , Redes Reguladoras de Genes , Trastornos Mentales/genética , Trastornos Mentales/patología , Trastornos Mentales/veterinaria , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Fenotipo , Sitios de Carácter Cuantitativo , Estrés Psicológico/genética , Transcriptoma
16.
PLoS One ; 9(5): e97500, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24848969

RESUMEN

Intestinal dysbiosis and circadian rhythm disruption are associated with similar diseases including obesity, metabolic syndrome, and inflammatory bowel disease. Despite the overlap, the potential relationship between circadian disorganization and dysbiosis is unknown; thus, in the present study, a model of chronic circadian disruption was used to determine the impact on the intestinal microbiome. Male C57BL/6J mice underwent once weekly phase reversals of the light:dark cycle (i.e., circadian rhythm disrupted mice) to determine the impact of circadian rhythm disruption on the intestinal microbiome and were fed either standard chow or a high-fat, high-sugar diet to determine how diet influences circadian disruption-induced effects on the microbiome. Weekly phase reversals of the light:dark (LD) cycle did not alter the microbiome in mice fed standard chow; however, mice fed a high-fat, high-sugar diet in conjunction with phase shifts in the light:dark cycle had significantly altered microbiota. While it is yet to be established if some of the adverse effects associated with circadian disorganization in humans (e.g., shift workers, travelers moving across time zones, and in individuals with social jet lag) are mediated by dysbiosis, the current study demonstrates that circadian disorganization can impact the intestinal microbiota which may have implications for inflammatory diseases.


Asunto(s)
Ritmo Circadiano/fisiología , Disbiosis/microbiología , Intestinos/microbiología , Fotoperiodo , Animales , Dieta Alta en Grasa/efectos adversos , Sacarosa en la Dieta/efectos adversos , Disbiosis/etiología , Disbiosis/fisiopatología , Intestinos/fisiopatología , Luz , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota/fisiología
17.
Science ; 342(6165): 1508-12, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24357318

RESUMEN

The inbred mouse C57BL/6J is the reference strain for genome sequence and for most behavioral and physiological phenotypes. However, the International Knockout Mouse Consortium uses an embryonic stem cell line derived from a related C57BL/6N substrain. We found that C57BL/6N has a lower acute and sensitized response to cocaine and methamphetamine. We mapped a single causative locus and identified a nonsynonymous mutation of serine to phenylalanine (S968F) in Cytoplasmic FMRP interacting protein 2 (Cyfip2) as the causative variant. The S968F mutation destabilizes CYFIP2, and deletion of the C57BL/6N mutant allele leads to acute and sensitized cocaine-response phenotypes. We propose that CYFIP2 is a key regulator of cocaine response in mammals and present a framework to use mouse substrains to identify previously unknown genes and alleles regulating behavior.


Asunto(s)
Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/psicología , Cocaína/administración & dosificación , Comportamiento de Búsqueda de Drogas , Proteínas del Tejido Nervioso/fisiología , Proteínas Adaptadoras Transductoras de Señales , Sustitución de Aminoácidos , Animales , Estimulantes del Sistema Nervioso Central/administración & dosificación , Metanfetamina/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Mutación , Proteínas del Tejido Nervioso/genética , Fenilalanina/genética , Polimorfismo de Nucleótido Simple , Desempeño Psicomotor/efectos de los fármacos , Sitios de Carácter Cuantitativo , Serina/genética
18.
Elife ; 2: e00426, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23580255

RESUMEN

Genetic and molecular approaches have been critical for elucidating the mechanism of the mammalian circadian clock. Here, we demonstrate that the ClockΔ19 mutant behavioral phenotype is significantly modified by mouse strain genetic background. We map a suppressor of the ClockΔ19 mutation to a ∼900 kb interval on mouse chromosome 1 and identify the transcription factor, Usf1, as the responsible gene. A SNP in the promoter of Usf1 causes elevation of its transcript and protein in strains that suppress the Clock mutant phenotype. USF1 competes with the CLOCK:BMAL1 complex for binding to E-box sites in target genes. Saturation binding experiments demonstrate reduced affinity of the CLOCKΔ19:BMAL1 complex for E-box sites, thereby permitting increased USF1 occupancy on a genome-wide basis. We propose that USF1 is an important modulator of molecular and behavioral circadian rhythms in mammals. DOI:http://dx.doi.org/10.7554/eLife.00426.001.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Relojes Circadianos , Ritmo Circadiano , ADN/metabolismo , Mutación , Factores Estimuladores hacia 5'/metabolismo , Factores de Transcripción ARNTL/genética , Animales , Sitios de Unión , Unión Competitiva , Proteínas CLOCK/genética , Relojes Circadianos/genética , Ritmo Circadiano/genética , Elementos E-Box , Regulación de la Expresión Génica , Genotipo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/metabolismo , Transducción de Señal , Especificidad de la Especie , Factores de Tiempo , Transcripción Genética , Activación Transcripcional , Factores Estimuladores hacia 5'/genética
19.
Sleep ; 35(7): 949-56, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22754041

RESUMEN

STUDY OBJECTIVE: Sleep and mood disorders have long been understood to have strong genetic components, and there is considerable comorbidity of sleep abnormalities and mood disorders, suggesting the involvement of common genetic pathways. Here, we examine a candidate gene implicated in the regulation of both sleep and affective behavior using a knockout mouse model. DESIGN: Previously, we identified a quantitative trait locus (QTL) for REM sleep amount, REM sleep bout number, and wake amount in a genetically segregating population of mice. Here, we show that traits mapping to this QTL correlated with an expression QTL for neurotensin receptor 1 (Ntsr1), a receptor for neurotensin, a ligand known to be involved in several psychiatric disorders. We examined sleep as well as behaviors indicative of anxiety and depression in the NTSR1 knockout mouse. MEASUREMENTS AND RESULTS: NTSR1 knockouts had a lower percentage of sleep time spent in REM sleep in the dark phase and a larger diurnal variation in REM sleep duration than wild types under baseline conditions. Following sleep deprivation, NTSR1 knockouts exhibited more wake and less NREM rebound sleep. NTSR1 knockouts also showed increased anxious and despair behaviors. CONCLUSIONS: Here we illustrate a link between expression of the Ntsr1 gene and sleep traits previously associated with a particular QTL. We also demonstrate a relationship between Ntsr1 and anxiety and despair behaviors. Given the considerable evidence that anxiety and depression are closely linked with abnormalities in sleep, the data presented here provide further evidence that neurotensin and Ntsr1 may be a component of a pathway involved in both sleep and mood disorders.


Asunto(s)
Afecto/fisiología , Receptores de Neurotensina/fisiología , Sueño/fisiología , Animales , Ansiedad/genética , Depresión/genética , Electroencefalografía , Electromiografía , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados/fisiología , Actividad Motora/fisiología , Sitios de Carácter Cuantitativo , Privación de Sueño/fisiopatología
20.
Neuropsychopharmacology ; 37(4): 1026-35, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22089318

RESUMEN

Csnk1e, the gene encoding casein kinase 1-epsilon, has been implicated in sensitivity to amphetamines. Additionally, a polymorphism in CSNK1E was associated with heroin addiction, suggesting that this gene may also affect opioid sensitivity. In this study, we first conducted genome-wide quantitative trait locus (QTL) mapping of methamphetamine (MA)-induced locomotor activity in C57BL/6J (B6) × DBA/2J (D2)-F(2) mice and a more highly recombinant F(8) advanced intercross line. We identified a QTL on chromosome 15 that contained Csnk1e (63-86 Mb; Csnk1e=79.25 Mb). We replicated this result and further narrowed the locus using B6.D2(Csnk1e) and D2.B6(Csnk1e) reciprocal congenic lines (78-86.8 and 78.7-81.6 Mb, respectively). This locus also affected sensitivity to the µ-opioid receptor agonist fentanyl. Next, we directly tested the hypothesis that Csnk1e is a genetic regulator of sensitivity to psychostimulants and opioids. Mice harboring a null allele of Csnk1e showed an increase in locomotor activity following MA administration. Consistent with this result, coadministration of a selective pharmacological inhibitor of Csnk1e (PF-4800567) increased the locomotor stimulant response to both MA and fentanyl. These results show that a narrow genetic locus that contains Csnk1e is associated with differences in sensitivity to MA and fentanyl. Furthermore, gene knockout and selective pharmacological inhibition of Csnk1e define its role as a negative regulator of sensitivity to psychostimulants and opioids.


Asunto(s)
Analgésicos Opioides/farmacología , Caseína Cinasa 1 épsilon/genética , Estimulantes del Sistema Nervioso Central/farmacología , Resistencia a Medicamentos/genética , Sitios de Carácter Cuantitativo/genética , Animales , Caseína Cinasa 1 épsilon/deficiencia , Femenino , Estudio de Asociación del Genoma Completo/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...