Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (209)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39072632

RESUMEN

The preterm neonatal airway epithelium is constantly exposed to environmental stressors. One of these stressors in neonates with lung disease includes oxygen (O2) tension higher than the ambient atmosphere - termed hyperoxia (>21% O2). The effect of hyperoxia on the airway depends on various factors, including the developmental stage of the airway, the degree of hyperoxia, and the duration of exposure, with variable exposures potentially leading to unique phenotypes. While there has been extensive research on the effect of hyperoxia on neonatal lung alveolarization and airway hyperreactivity, little is known about the short and long-term underlying effect of hyperoxia on human neonatal airway epithelial cells. A major reason for this is the scarcity of an effective in vitro model to study human neonatal airway epithelial development and function. Here, we describe a method for isolating and expanding human neonatal tracheal airway epithelial cells (nTAECs) utilizing human neonatal tracheal aspirates and culturing these cells in air-liquid interface (ALI) culture. We demonstrate that nTAECs form a mature polarized cell-monolayer in ALI culture and undergo mucociliary differentiation. We also present a method for moderate hyperoxia exposure of the cell monolayer in ALI culture using a specialized incubator. Additionally, we describe an assay to measure cellular oxidative stress following hyperoxia exposure in ALI culture using fluorescent quantification, which confirms that moderate hyperoxia exposure induces cellular oxidative stress but does not cause significant cell membrane damage or apoptosis. This model can potentially be used to simulate clinically relevant hyperoxia exposure encountered by neonatal airways in the Neonatal Intensive Care Unit (NICU) and used to study the short and long-lasting effects of O2 on neonatal airway epithelial programming. Studies using this model could be utilized to explore ways to mitigate early-life oxidative injury to developing airways, which is implicated in the development of long-term airway diseases in former premature infants.


Asunto(s)
Células Epiteliales , Hiperoxia , Humanos , Recién Nacido , Hiperoxia/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/citología , Tráquea/citología , Tráquea/metabolismo , Técnicas de Cultivo Tridimensional de Células/métodos , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Técnicas de Cultivo de Célula/métodos
2.
Res Sq ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38746130

RESUMEN

Friedreich's Ataxia (FRDA) is a neuromuscular degenerative disorder caused by trinucleotide expansions in the first intron of the frataxin (FXN) gene, resulting in insufficient levels of functional FNX protein. Deficits in FXN involve mitochondrial disruptions including iron-sulfur cluster synthesis and impaired energetics. These studies were to identify unique protein-protein interactions with FXN to better understand its function and design therapeutics. Two complementary approaches were employed, BioID and Co-IP, to identify protein interactions with FXN at the direct binding, indirect binding, and non-proximal levels. Forty-one novel protein interactions were identified by BioID and IP techniques. The FXN protein landscape was further analyzed incorporating both interaction type and functional pathways using a maximum path of 6 proteins with a potential direct interaction between FXN and NFS1. Probing the intersection between FXN-protein landscape and biological pathways associated with FRDA, we identified 41 proteins of interest. Peroxiredoxin 3 (Prdx3) was chosen for further analysis because of its role in mitochondrial oxidative injury. Our data has demonstrated the strengths of employing complementary methods to identify a unique interactome for FXN. Our data provides new insights into FXN function and regulation, a potential direct interaction between FXN and NFS1, and pathway interactions between FXN and Prdx3.

3.
Antioxidants (Basel) ; 13(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38671839

RESUMEN

Extremely preterm infants are often treated with supraphysiological oxygen, which contributes to the development of bronchopulmonary dysplasia (BPD). These same infants exhibit compromised antioxidant capacities due in part to selenium (Se) deficiency. Se is essential for basal and inducible antioxidant responses. The present study utilized a perinatal Se deficiency (SeD) mouse model to identify the combined effects of newborn hyperoxia exposure and SeD on alveolarization and antioxidant responses, including the identification of affected developmental pathways. Se-sufficient (SeS) and SeD C3H/HeN breeding pairs were generated, and pups were exposed to room air or 85% O2 from birth to 14 d. Survival, antioxidant protein expression, and RNA seq analyses were performed. Greater than 40% mortality was observed in hyperoxia-exposed SeD pups. Surviving SeD pups had greater lung growth deficits than hyperoxia-exposed SeS pups. Gpx2 and 4 protein and Gpx activity were significantly decreased in SeD pups. Nrf2-regulated proteins, Nqo1 and Gclc were increased in SeD pups exposed to hyperoxia. RNA seq revealed significant decreases in the Wnt/ß-catenin and Notch pathways. Se is a biologically relevant modulator of perinatal lung development and antioxidant responses, especially in the context of hyperoxia exposure. The RNA seq analyses suggest pathways essential for normal lung development are dysregulated by Se deficiency.

4.
Antioxidants (Basel) ; 12(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37507924

RESUMEN

Necrotizing enterocolitis (NEC) is a neonatal intestinal disease associated with oxidative stress. The targets of peroxidation and the role of the innate intestinal epithelial antioxidant defense system are ill-defined. We hypothesized that oxidative stress in NEC correlates with oxidized GSH redox potentials, lipid peroxidation, and a dysfunctional antioxidant system. Methods: Intestinal samples from infants +/- NEC were generated into enteroids and incubated with lipopolysaccharide (LPS) and hypoxia to induce experimental NEC. HPLC assayed GSH redox potentials. Lipid peroxidation was measured by flow cytometry. Immunoblotting measured glutathione peroxidase 4 (Gpx4) expression. Results: GSH redox potentials were more oxidized in NEC intestinal tissue and enteroids as compared to controls. Lipid radicals in NEC-induced enteroids were significantly increased. Human intestinal tissue with active NEC and treated enteroid cultures revealed decreased levels of Gpx4. Conclusions: The ability of neonatal intestine to mitigate radical accumulation plays a role in its capacity to overcome oxidative stress. Accumulation of lipid radicals is confirmed after treatment of enteroids with NEC-triggering stimuli. Decreased Gpx4 diminishes a cell's ability to effectively neutralize lipid radicals. When lipid peroxidation overwhelms antioxidant machinery, cellular death ensues. Identification of the mechanisms behind GSH-dependent enzyme dysfunction in NEC may provide insights into strategies for reversing radical damage.

5.
Metabolites ; 12(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36295835

RESUMEN

Omics analyses are commonly used for identifying pathways and genes responsible for physiologic and pathologic processes. Though sex is considered a biological variable in rigorous assessments of pulmonary responses to oxidant exposures, the contribution of the murine strain is largely ignored. This study utilized an unbiased integrated assessment of high-resolution metabolomic profiling and RNA-sequencing to explore sex- and strain-dependent pathways in adult mouse lungs. The results indicated that strain exhibited a greater influence than sex on pathways associated with inflammatory and oxidant/antioxidant responses and that interaction metabolites more closely resembled those identified as differentially expressed by strain. Metabolite analyses revealed that the components of the glutathione antioxidant pathway were different between strains, specifically in the formation of mixed disulfides. Additionally, selenium metabolites such as selenohomocystiene and selenocystathionine were similarly differentially expressed. Transcriptomic analysis revealed similar findings, as evidenced by differences in glutathione peroxidase, peroxiredoxin, and the inflammatory transcription factors RelA and Jun. In summary, an multi-omics integrated approach identified that murine strain disproportionately impacts baseline expression of antioxidant systems in lung tissues. We speculate that strain-dependent differences contribute to discrepant pulmonary responses in preclincal mouse models, with deleterious effects on clinical translation.

6.
Expert Rev Mol Med ; 24: e33, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36052538

RESUMEN

The mammalian respiratory system or lung is a tree-like branching structure, and the main site of gas exchange with the external environment. Structurally, the lung is broadly classified into the proximal (or conducting) airways and the distal alveolar region, where the gas exchange occurs. In parallel with the respiratory tree, the pulmonary vasculature starts with large pulmonary arteries that subdivide rapidly ending in capillaries adjacent to alveolar structures to enable gas exchange. The NOTCH signalling pathway plays an important role in lung development, differentiation and regeneration post-injury. Signalling via the NOTCH pathway is mediated through activation of four NOTCH receptors (NOTCH1-4), with each receptor capable of regulating unique biological processes. Dysregulation of the NOTCH pathway has been associated with development and pathophysiology of multiple adult acute and chronic lung diseases. This includes accumulating evidence that alteration of NOTCH3 signalling plays an important role in the development and pathogenesis of chronic obstructive pulmonary disease, lung cancer, asthma, idiopathic pulmonary fibrosis and pulmonary arterial hypertension. Herein, we provide a comprehensive summary of the role of NOTCH3 signalling in regulating repair/regeneration of the adult lung, its association with development of lung disease and potential therapeutic strategies to target its signalling activity.


Asunto(s)
Fenómenos Biológicos , Enfermedades Pulmonares , Animales , Humanos , Mamíferos/metabolismo , Receptor Notch3/genética , Receptor Notch3/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal
7.
ChemMedChem ; 17(14): e202200250, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35588002

RESUMEN

Organic isothiocyanates (ITCs) are a class of anticancer agents which naturally result from the enzymatic degradation of glucosinolates produced by Brassica vegetables. Previous studies have demonstrated that the structure of an ITC impacts its potency and mode(s) of anticancer properties, opening the way to preparation and evaluation of synthetic, non-natural ITC analogues. This study describes the preparation of a library of 79 non-natural ITC analogues intended to probe further structure-activity relationships for aryl ITCs and second-generation, functionalized biaryl ITC variants. ITC candidates were subjected to bifurcated evaluation of antiproliferative and antioxidant response element (ARE)-induction capacity against human MCF-7 cells. The results of this study led to the identification of (1) several key structure-activity relationships and (2) lead ITCs demonstrating potent antiproliferative properties.


Asunto(s)
Antineoplásicos , Isotiocianatos , Antineoplásicos/farmacología , Elementos de Respuesta Antioxidante , Humanos , Isotiocianatos/química , Células MCF-7 , Relación Estructura-Actividad
8.
Children (Basel) ; 8(3)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799529

RESUMEN

Reactive oxygen species (ROS) have been the focus of redox research in the realm of oxidative neonatal respiratory diseases such as bronchopulmonary dysplasia (BPD). Over the years, nitric oxide (NO) and carbon monoxide (CO) have been identified as important gaseous signaling molecules involved in modulating the redox homeostasis in the developing lung. While animal data targeting aspects of these redox pathways have been promising in treating and/or preventing experimental models of neonatal lung disease, none are particularly effective in human neonatal clinical trials. In recent years, hydrogen sulfide (H2S) has emerged as a novel gasotransmitter involved in a magnitude of cellular signaling pathways and functions. The importance of H2S signaling may lie in the fact that early life-forms evolved in a nearly anoxic, sulfur-rich environment and were dependent on H2S for energy. Recent studies have demonstrated an important role of H2S and its synthesizing enzymes in lung development, which normally takes place in a relatively hypoxic intrauterine environment. In this review, we look at clues from evolution and explore the important role that the H2S signaling pathway may play in oxidative neonatal respiratory diseases and discuss future opportunities to explore this phenomenon in the context of neonatal chronic lung disease.

9.
Oxid Med Cell Longev ; 2020: 2908271, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32587658

RESUMEN

Thioredoxin reductase-1 (TXNRD1) inhibition activates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) responses and prevents acute lung injury (ALI). Heme oxygenase-1 (HO-1) induction following TXNRD1 inhibition is Nrf2-dependent in airway epithelial (club) cells in vitro. The influence of club cell HO-1 on lung development and lung injury responses is poorly understood. The present studies characterized the effects of hyperoxia on club cell-specific HO-1 knockout (KO) mice. These mice were generated by crossing Hmox1 flox mice with transgenic mice expressing cre recombinase under control of the club cell-specific Scgb1a1 promoter. Baseline analyses of lung architecture and function performed in age-matched adult wild-type and KO mice indicated an increased alveolar size and airway resistance in HO-1 KO mice. In subsequent experiments, adult wild-type and HO-1 KO mice were either continuously exposed to >95% hyperoxia or room air for 72 h or exposed to >95 hyperoxia for 48 h followed by recovery in room air for 48 h. Injury was quantitatively assessed by calculating right lung/body weight ratios (g/kg). Analyses indicated an independent effect of hyperoxia but not genotype on right lung/body weight ratios in both wild-type and HO-1 KO mice. The magnitude of increases in right lung/body weight ratios was similar in mice of both genotypes. In the recovery model, an independent effect of hyperoxia but not genotype was also detected. In contrast to the continuous exposure model, right lung/body weight ratio mice were significantly elevated in HO-1 KO but not wild-type mice. Though club cell HO-1 does not alter hyperoxic sensitivity in adult mice, it significantly influences lung development and resolution of lung injury following acute hyperoxic exposure.


Asunto(s)
Envejecimiento/patología , Células Epiteliales/enzimología , Eliminación de Gen , Hemo-Oxigenasa 1/metabolismo , Hiperoxia/enzimología , Hiperoxia/patología , Animales , Animales Recién Nacidos , Cruzamientos Genéticos , Células Epiteliales/patología , Femenino , Genotipo , Integrasas/metabolismo , Pulmón/embriología , Lesión Pulmonar/enzimología , Lesión Pulmonar/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Recombinación Genética/genética , Uteroglobina/metabolismo
10.
Mol Neurobiol ; 56(10): 6736-6755, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30915713

RESUMEN

Collapsin response mediator proteins (CRMPs) are a family of ubiquitously expressed, homologous phosphoproteins best known for coordinating cytoskeletal formation and regulating cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. These functions are tightly regulated by post-translational modifications including phosphorylation, SUMOylation, oxidation, and O-GlcNAcylation. While CRMP2's physiological functions rely mostly on its non-phosphorylated state, dysregulation of CRMP2 phosphorylation and SUMOylation has been reported to be involved in the pathophysiology of multiple diseases including cancer, chronic pain, spinal cord injury, neurofibromatosis type 1, and others. Here, we provide a consolidated update on what is known about CRMP2 signaling and function, first focusing on axonal growth and neuronal polarity, then illustrating the link between dysregulated CRMP2 post-translational modifications and diseases. We additionally discuss the roles of CRMP2 in non-neuronal cells, both in the CNS and regions of the periphery. Finally, we offer thoughts on the therapeutic implications of modulating CRMP2 function in a variety of diseases.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Polaridad Celular , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Humanos , Modelos Biológicos , Neuronas/patología
11.
East Biol ; 2019(Spec Issue): 33-46, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31890349

RESUMEN

Raising larvae of Danio rerio Hamilton (zebrafish) is a challenging task that requires skill and a significant daily time investment. We have developed a simple nursery and a husbandry regimen that streamlines procedures and is feasible for small laboratories to carry out in the absence of support staff. The nursery is inexpensive to build and easy to maintain. The regimen uses a simple benchtop nursery that houses up to 300 larvae. Feeding is simplified by using defined volumes of microencapsulated feeds with only 1 type of live prey as a dietary supplement, Artemia franciscana Leach (brine shrimp). Tests of the regimen using wild-type lines showed that it supports timely entry into the metamorphic period and supports survival rates of at least 75%. Further, inexperienced users were able to raise larvae successfully. Here, we describe how to assemble the nursery and how to carry out the feeding and care regimen.

12.
ChemMedChem ; 13(16): 1695-1710, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-29924910

RESUMEN

The consumption of Brassica vegetables provides beneficial effects through organic isothiocyanates (ITCs), products of the enzymatic hydrolysis of glucosinolate secondary metabolites. The ITC l-sulforaphane (l-SFN) is the principle agent in broccoli that demonstrates several modes of anticancer action. While the anticancer properties of ITCs like l-SFN have been extensively studied and l-SFN has been the subject of multiple human clinical trials, the scope of this work has largely been limited to those derivatives found in nature. Previous studies have demonstrated that structural changes in an ITC can lead to marked differences in a compound's potency to 1) inhibit the growth of cancer cells, and 2) alter cellular transcriptional profiles. This study describes the preparation of a library of non-natural aryl ITCs and the development of a bifurcated screening approach to evaluate the dose- and time-dependence on antiproliferative and chemopreventive properties against human MCF-7 breast cancer cells. Antiproliferative effects were evaluated using a commercial MTS cell viability assay. Chemopreventive properties were evaluated using an antioxidant response element (ARE)-promoted luciferase reporter assay. The results of this study have led to the identification of 1) several key structure-activity relationships and 2) lead ITCs for continued development.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Derivados del Benceno/farmacología , Isotiocianatos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Elementos de Respuesta Antioxidante/genética , Antioxidantes/síntesis química , Antioxidantes/química , Derivados del Benceno/síntesis química , Derivados del Benceno/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Expresión Génica/efectos de los fármacos , Humanos , Isotiocianatos/síntesis química , Isotiocianatos/química , Células MCF-7 , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
13.
PLoS One ; 12(1): e0168777, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28045936

RESUMEN

Mitochondria play a fundamental role in the regulation of cell death during accumulation of oxidants. High concentrations of atmospheric oxygen (hyperoxia), used clinically to treat tissue hypoxia in premature newborns, is known to elicit oxidative stress and mitochondrial injury to pulmonary epithelial cells. A consequence of oxidative stress in mitochondria is the accumulation of peroxides which are detoxified by the dedicated mitochondrial thioredoxin system. This system is comprised of the oxidoreductase activities of peroxiredoxin-3 (Prx3), thioredoxin-2 (Trx2), and thioredoxin reductase-2 (TrxR2). The goal of this study was to understand the role of the mitochondrial thioredoxin system and mitochondrial injuries during hyperoxic exposure. Flow analysis of the redox-sensitive, mitochondrial-specific fluorophore, MitoSOX, indicated increased levels of mitochondrial oxidant formation in human adenocarcinoma cells cultured in 95% oxygen. Increased expression of Trx2 and TrxR2 in response to hyperoxia were not attributable to changes in mitochondrial mass, suggesting that hyperoxic upregulation of mitochondrial thioredoxins prevents accumulation of oxidized Prx3. Mitochondrial oxidoreductase activities were modulated through pharmacological inhibition of TrxR2 with auranofin and genetically through shRNA knockdown of Trx2 and Prx3. Diminished Trx2 and Prx3 expression was associated with accumulation of mitochondrial superoxide; however, only shRNA knockdown of Trx2 increased susceptibility to hyperoxic cell death and increased phosphorylation of apoptosis signal-regulating kinase-1 (ASK1). In conclusion, the mitochondrial thioredoxin system regulates hyperoxic-mediated death of pulmonary epithelial cells through detoxification of oxidants and regulation of redox-dependent apoptotic signaling.


Asunto(s)
Apoptosis , Hiperoxia , Mitocondrias/metabolismo , Oxidantes/metabolismo , Peroxiredoxina III/metabolismo , Tiorredoxinas/metabolismo , Células A549 , Línea Celular Tumoral , Humanos , MAP Quinasa Quinasa Quinasa 5/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Oxígeno/metabolismo , Transducción de Señal
14.
Free Radic Biol Med ; 99: 533-543, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27639450

RESUMEN

Thiol switches are important regulators of cellular signaling and are coordinated by several redox enzyme systems including thioredoxins, peroxiredoxins, and glutathione. Thioredoxin-1 (Trx1), in particular, is an important signaling molecule not only in response to redox perturbations, but also in cellular growth, regulation of gene expression, and apoptosis. The active site of this enzyme is a highly conserved C-G-P-C motif and the redox mechanism of Trx1 is rapid which presents a challenge in determining specific substrates. Numerous in vitro approaches have identified Trx1-dependent thiol switches; however, these findings may not be physiologically relevant and little is known about Trx1 interactions in vivo. In order to identify Trx1 targets in vivo, we generated a transgenic mouse with inducible expression of a mutant Trx1 transgene to stabilize intermolecular disulfides with protein substrates. Expression of the Trx1 "substrate trap" transgene did not interfere with endogenous thioredoxin or glutathione systems in brain, heart, lung, liver, and kidney. Following immunoprecipitation and proteomic analysis, we identified 41 homeostatic Trx1 interactions in perinatal lung, including previously described Trx1 substrates such as members of the peroxiredoxin family and collapsin response mediator protein 2. Using perinatal hyperoxia as a model of oxidative injury, we found 17 oxygen-induced interactions which included several cytoskeletal proteins which may be important to alveolar development. The data herein validates this novel mouse model for identification of tissue- and cell-specific Trx1-dependent pathways that regulate physiological signals in response to redox perturbations.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Efecto Fundador , Hiperoxia/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Tiorredoxinas/metabolismo , Animales , Animales Recién Nacidos , Dominio Catalítico , Proteínas del Citoesqueleto/genética , Feto , Regulación de la Expresión Génica , Ontología de Genes , Hiperoxia/genética , Hiperoxia/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Anotación de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Oxidación-Reducción , Mapeo de Interacción de Proteínas , Transducción de Señal , Tiorredoxinas/genética
15.
PLoS One ; 11(8): e0160818, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27518105

RESUMEN

RATIONALE: Infants born to diabetic or obese mothers are at risk of respiratory distress and persistent pulmonary hypertension of the newborn (PPHN), conceivably through fuel-mediated pathogenic mechanisms. Prior research and preventative measures focus on controlling maternal hyperglycemia, but growing evidence suggests a role for additional circulating fuels including lipids. Little is known about the individual or additive effects of a maternal high-fat diet on fetal lung development. OBJECTIVE: The objective of this study was to determine the effects of a maternal high-fat diet, alone and alongside late-gestation diabetes, on lung alveologenesis and vasculogenesis, as well as to ascertain if consequences persist beyond the perinatal period. METHODS: A rat model was used to study lung development in offspring from control, diabetes-exposed, high-fat diet-exposed and combination-exposed pregnancies via morphometric, histologic (alveolarization and vasculogenesis) and physiologic (echocardiography, pulmonary function) analyses at birth and 3 weeks of age. Outcomes were interrogated for diet, diabetes and interaction effect using ANOVA with significance set at p≤0.05. Findings prompted additional mechanistic inquiry of key molecular pathways. RESULTS: Offspring exposed to maternal diabetes or high-fat diet, alone and in combination, had smaller lungs and larger hearts at birth. High-fat diet-exposed, but not diabetes-exposed offspring, had a higher perinatal death rate and echocardiographic evidence of PPHN at birth. Alveolar mean linear intercept, septal thickness, and airspace area (D2) were not significantly different between the groups; however, markers of lung maturity were. Both diabetes-exposed and diet-exposed offspring expressed more T1α protein, a marker of type I cells. Diet-exposed newborn pups expressed less surfactant protein B and had fewer pulmonary vessels enumerated. Mechanistic inquiry revealed alterations in AKT activation, higher endothelin-1 expression, and an impaired Txnip/VEGF pathway that are important for vessel growth and migration. After 3 weeks, mortality remained highest and static lung compliance and hysteresis were lowest in combination-exposed offspring. CONCLUSION: This study emphasizes the effects of a maternal high-fat diet, especially alongside late-gestation diabetes, on pulmonary vasculogenesis, demonstrates adverse consequences beyond the perinatal period and directs attention to mechanistic pathways of interest. Findings provide a foundation for additional investigation of preventative and therapeutic strategies aimed at decreasing pulmonary morbidity in at-risk infants.


Asunto(s)
Diabetes Gestacional , Dieta Alta en Grasa/efectos adversos , Pulmón/crecimiento & desarrollo , Fenómenos Fisiologicos Nutricionales Maternos , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Animales , Animales Recién Nacidos , Femenino , Hemodinámica , Pulmón/irrigación sanguínea , Pulmón/patología , Pulmón/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal/mortalidad , Alveolos Pulmonares/patología , Arteria Pulmonar/patología , Venas Pulmonares/patología , Ratas , Ratas Sprague-Dawley
16.
Oxid Med Cell Longev ; 2016: 5829063, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27437069

RESUMEN

Thioredoxin-interacting protein (Txnip) acts as a negative regulator of thioredoxin function and is a critical modulator of several diseases including, but not limited to, diabetes, ischemia-reperfusion cardiac injury, and carcinogenesis. Therefore, Txnip has become an attractive therapeutic target to alleviate disease pathologies. Although Txnip has been implicated with numerous cellular processes such as proliferation, fatty acid and glucose metabolism, inflammation, and apoptosis, the molecular mechanisms underlying these processes are largely unknown. The objective of these studies was to identify Txnip interacting proteins using the proximity-based labeling method, BioID, to understand differential regulation of pleiotropic Txnip cellular functions. The BioID transgene fused to Txnip expressed in HEK293 identified 31 interacting proteins. Many protein interactions were redox-dependent and were disrupted through mutation of a previously described reactive cysteine (C247S). Furthermore, we demonstrate that this model can be used to identify dynamic Txnip interactions due to known physiological regulators such as hyperglycemia. These data identify novel Txnip protein interactions and demonstrate dynamic interactions dependent on redox and glucose perturbations, providing clarification to the pleiotropic cellular functions of Txnip.


Asunto(s)
Proteínas Portadoras/metabolismo , Glucosa/farmacología , Mapeo de Interacción de Proteínas , Células HEK293 , Humanos , Oxidación-Reducción/efectos de los fármacos , Unión Proteica/efectos de los fármacos
17.
Biol Open ; 5(6): 689-97, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27142334

RESUMEN

Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling.

18.
Adv Physiol Educ ; 39(4): 341-51, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26628658

RESUMEN

The process of developing effective science educators has been a long-standing objective of the broader education community. Numerous studies have recommended not only depth in a teacher's subject area but also a breadth of professional development grounded in constructivist principles, allowing for successful student-centered and inquiry-based instruction. Few programs, however, have addressed the integration of the scientific research laboratory into the science classroom as a viable approach to professional development. Additionally, while occasional laboratory training programs have emerged in recent years, many lack a component for translating acquired skills into reformed classroom instruction. Given the rapid development and demand for knowledgeable employees and an informed population from the biotech and medical industries in recent years, it would appear to be particularly advantageous for the physiology and broader science education communities to consider this issue. The goal of this study was to examine the effectiveness of a laboratory-based professional development program focused on the integration of reformed teaching principles into the classrooms of secondary teachers. This was measured through the program's ability to instill in its participants elevated academic success while gaining fulfillment in the classroom. The findings demonstrated a significant improvement in the use of student-centered instruction and other reformed methods by program participants as well as improved self-efficacy, confidence, and job satisfaction. Also revealed was a reluctance to refashion established classroom protocols. The combination of these outcomes allowed for construction of an experiential framework for professional development in applied science education that supports an atmosphere of reformed teaching in the classroom.


Asunto(s)
Investigación Biomédica/educación , Educación Profesional/métodos , Docentes , Laboratorios , Desarrollo de Personal/métodos , Enseñanza/métodos , Escolaridad , Humanos , Evaluación de Programas y Proyectos de Salud
19.
Free Radic Biol Med ; 75: 167-77, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25106706

RESUMEN

The most common form of newborn chronic lung disease, bronchopulmonary dysplasia (BPD), is thought to be caused by oxidative disruption of lung morphogenesis, which results in decreased pulmonary vasculature and alveolar simplification. Although cellular redox status is known to regulate cellular proliferation and differentiation, redox-sensitive pathways associated with these processes in developing pulmonary epithelium are unknown. Redox-sensitive pathways are commonly regulated by cysteine thiol modifications. Therefore two thiol oxidoreductase systems, thioredoxin and glutathione, were chosen to elucidate the roles of these pathways on cell death. Studies herein indicate that thiol oxidation contributes to cell death through impaired activity of glutathione-dependent and thioredoxin (Trx) systems and altered signaling through redox-sensitive pathways. Free thiol content decreased by 71% with hyperoxic (95% oxygen) exposure. Increased cell death was observed during oxygen exposure when either the Trx or the glutathione-dependent system was pharmacologically inhibited with aurothioglucose (ATG) or buthionine sulfoximine, respectively. However, inhibition of the Trx system yielded the smallest decrease in free thiol content (1.44% with ATG treatment vs 21.33% with BSO treatment). Although Trx1 protein levels were unchanged, Trx1 function was impaired during hyperoxic treatment as indicated by progressive cysteine oxidation. Overexpression of Trx1 in H1299 cells utilizing an inducible construct increased cell survival during hyperoxia, whereas siRNA knockdown of Trx1 during oxygen treatment reduced cell viability. Overall, this indicated that a comparatively small pool of proteins relies on Trx redox functions to mediate cell survival in hyperoxia, and the protective functions of Trx1 are progressively lost by its oxidative inhibition. To further elucidate the role of Trx1, potential Trx1 redox protein-protein interactions mediating cytoprotection and cell survival pathways were determined by utilizing a substrate trap (mass action trapping) proteomics approach. With this method, known Trx1 targets were detected, including peroxiredoxin-1as well as novel targets, including two HSP90 isoforms (HSP90AA1 and HSP90AB1). Reactive cysteines within the structure of HSP90 are known to modulate its ATPase-dependent chaperone activity through disulfide formation and S-nitrosylation. Whereas HSP90 expression is unchanged at the protein level during hyperoxic exposure, siRNA knockdown significantly increased hyperoxic cell death by 2.5-fold, indicating cellular dependence on HSP90 chaperone functions in response to hyperoxic exposure. These data support the hypothesis that hyperoxic impairment of Trx1 has a negative impact on HSP90-oxidative responses critical to cell survival, with potential implications for pathways implicated in lung development and the pathogenesis of BPD.


Asunto(s)
Glutatión/metabolismo , Hiperoxia/metabolismo , Peroxirredoxinas/metabolismo , Tiorredoxinas/metabolismo , Displasia Broncopulmonar/embriología , Displasia Broncopulmonar/patología , Butionina Sulfoximina/farmacología , Línea Celular Tumoral , Supervivencia Celular , Glutatión/biosíntesis , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Pulmón/irrigación sanguínea , Pulmón/embriología , Oxidación-Reducción , Oxígeno/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Tiorredoxinas/biosíntesis , Tiorredoxinas/genética
20.
Cilia ; 2(1): 18, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24360193

RESUMEN

BACKGROUND: Lower airway abnormalities are common in patients with primary ciliary dyskinesia (PCD), a pediatric syndrome that results from structural or functional defects in motile cilia. Patients can suffer from recurrent bacterial infection in the lung, bronchiectasis, and respiratory distress in addition to chronic sinusitis, otitis media, infertility, and laterality defects. However, surprisingly little is known about the pulmonary phenotype of mouse models of this disorder. RESULTS: The pulmonary phenotype of two mouse models of PCD, nm1054 and bgh, which lack Pcdp1 and Spef2, respectively, was investigated by histological and immunohistochemical analysis. In addition, both models were challenged with Streptococcus pneumoniae, a common respiratory pathogen found in the lungs of PCD patients. Histopathological analyses reveal no detectable cellular, developmental, or inflammatory abnormalities in the lower airway of either PCD model. However, exposure to S. pneumoniae results in a markedly enhanced inflammatory response in both models. Based on analysis of inflammatory cells in bronchoalveolar lavage fluid and flow cytometric analysis of cytokines in the lung, the bgh model shows a particularly dramatic lymphocytic response by 3 days post-infection compared to the nm1054 model or wild type animals. CONCLUSIONS: Defects in ciliary motility result in a severe response to pulmonary infection. The PCD models nm1054 and bgh are distinct and clinically relevant models for future studies investigating the role of mucociliary clearance in host defense.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA