Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Invest Ophthalmol Vis Sci ; 64(15): 7, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38054922

RESUMEN

Purpose: Ocular lymphatic vessels play major physiological role in eye homeostasis and their dysfunction can contribute to the progression of several eye diseases. In this study, we characterized their spatiotemporal development and the cellular mechanisms occurring during their ontogenesis in the mouse eye. Methods: Whole mount immunofluorescent staining and imaging by standard or lightsheet fluorescence microscopy were performed on late embryonic and early postnatal eye mouse samples. Results: We observed that the ocular surface lymphatic vascular network develops at the early postnatal stages (between P0 and P5) from two nascent trunks arising at the nasal side on both sides of the nictitating membrane. These nascent vessels further branch and encircle the whole eye surface by sprouting lymphangiogenesis. In addition, we got evidence for the existence of a transient lymphvasculogenesis process generating lymphatic vessel fragments that will mostly formed the corneolimbal lymphatic vasculature which further connect to the conjunctival lymphatic network. Our results also support that CD206-positive macrophages can transdifferentiate and then integrate into the lymphatic neovessels. Conclusions: Several complementary cellular processes participate in the development of the lymphatic ocular surface vasculature. This knowledge paves the way for the design of new therapeutic strategies to interfere with ocular lymphatic vessel formation when needed.


Asunto(s)
Vasos Linfáticos , Animales , Ratones , Linfangiogénesis , Conjuntiva , Homeostasis , Macrófagos
2.
Biology (Basel) ; 10(7)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34201989

RESUMEN

Lymphatic vessels exert major effects on the maintenance of interstitial fluid homeostasis, immune cell trafficking, lipid absorption, tumor progression and metastasis. Recently, novel functional roles for the lymphatic vasculature have emerged, which can be associated with pathological situations. Among them, lymphatics have been proposed to participate in eye aqueous humor drainage, with potential consequences on intraocular pressure, a main risk factor for progression of glaucoma disease. In this review, after the description of eye fluid dynamics, we provide an update on the data concerning the distribution of ocular lymphatics. Particular attention is given to the results of investigations allowing the three dimensional visualization of the ocular surface vasculature, and to the molecular mechanisms that have been characterized to regulate ocular lymphatic vessel development. The studies concerning the potential role of lymphatics in aqueous humor outflow are reported and discussed. We also considered the novel studies mentioning the existence of an ocular glymphatic system which may have, in connection with lymphatics, important repercussions in retinal clearance and in diseases affecting the eye posterior segment. Some remaining unsolved questions and new directions to explore are proposed to improve the knowledge about both lymphatic and glymphatic system interactions with eye fluid homeostasis.

3.
Sci Rep ; 10(1): 16040, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994463

RESUMEN

Aqueous humor drainage is essential for the regulation of intraocular pressure (IOP), a major risk factor for glaucoma. The Schlemm's canal and the non-conventional uveoscleral pathway are known to drain aqueous humor from the eye anterior chamber. It has recently been reported that lymphatic vessels are involved in this process, and that the Schlemm's canal responds to some lymphatic regulators. We have previously shown a critical role for bone morphogenetic protein 9 (BMP9) in lymphatic vessel maturation and valve formation, with repercussions in drainage efficiency. Here, we imaged eye lymphatic vessels and analyzed the consequences of Bmp9 (Gdf2) gene invalidation. A network of lymphatic vessel hyaluronan receptor 1 (LYVE-1)-positive lymphatic vessels was observed in the corneolimbus and the conjunctiva. In contrast, LYVE-1-positive cells present in the ciliary bodies were belonging to the macrophage lineage. Although enlarged conjunctival lymphatic trunks and a reduced valve number were observed in Bmp9-KO mice, there were no morphological differences in the Schlemm's canal compared to wild type animals. Moreover, there were no functional consequences on IOP in both basal control conditions and after laser-induced ocular hypertonia. Thus, the BMP9-activated signaling pathway does not constitute a wise target for new glaucoma therapeutic strategies.


Asunto(s)
Factor 2 de Diferenciación de Crecimiento/metabolismo , Presión Intraocular/fisiología , Vasos Linfáticos/metabolismo , Animales , Cámara Anterior/fisiología , Humor Acuoso/metabolismo , Glaucoma/metabolismo , Linfangiogénesis/fisiología , Vasos Linfáticos/fisiología , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Esclerótica/fisiología , Tonometría Ocular/métodos , Malla Trabecular/fisiología
4.
Stem Cell Reports ; 12(1): 98-111, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30595547

RESUMEN

Exogenous cues involved in the regulation of the initial steps of lymphatic endothelial development remain largely unknown. We have used an in vitro model based on the co-culture of vascular precursors derived from mouse embryonic stem cell (ESC) differentiation and OP9 stromal cells to examine the first steps of lymphatic specification and expansion. We found that bone morphogenetic protein 9 (BMP9) induced a dose-dependent biphasic effect on ESC-derived vascular precursors. At low concentrations, below 1 ng/mL, BMP9 expands the LYVE-1-positive lymphatic progeny and activates the calcineurin phosphatase/NFATc1 signaling pathway. In contrast, higher BMP9 concentrations preferentially enhance the formation of LYVE-1-negative endothelial cells. This effect results from an OP9 stromal cell-mediated VEGF-A secretion. RNA-silencing experiments indicate specific involvement of ALK1 and ALK2 receptors in these different BMP9 responses. BMP9 at low concentrations may be a useful tool to generate lymphatic endothelial cells from stem cells for cell-replacement strategies.


Asunto(s)
Diferenciación Celular , Células Endoteliales/citología , Factor 2 de Diferenciación de Crecimiento/farmacología , Linfangiogénesis , Células Madre Embrionarias de Ratones/citología , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animales , Calcineurina/metabolismo , Proliferación Celular , Células Cultivadas , Células Endoteliales/metabolismo , Humanos , Vasos Linfáticos/citología , Ratones , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
Microvasc Res ; 96: 31-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25020266

RESUMEN

The lymphatic vasculature plays an essential role in the maintenance of tissue interstitial fluid balance and in the immune response. After capture of fluids, proteins and antigens by lymphatic capillaries, lymphatic collecting vessels ensure lymph transport. An important component to avoid lymph backflow and to allow a unidirectional flow is the presence of intraluminal valves. Defects in the function of collecting vessels lead to lymphedema. Several important factors and signaling pathways involved in lymphatic collecting vessel maturation and valve morphogenesis have now been discovered. The present review summarizes the current knowledge about the key steps of lymphatic collecting vessel development and maturation and focuses on the regulatory mechanisms involved in lymphatic valve formation.


Asunto(s)
Linfangiogénesis/fisiología , Vasos Linfáticos/embriología , Animales , Tipificación del Cuerpo , Vasos Linfáticos/metabolismo , Linfedema , Ratones , Modelos Biológicos , Morfogénesis/fisiología , Transducción de Señal
6.
Blood ; 122(4): 598-607, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23741013

RESUMEN

Lymphatic vessels are critical for the maintenance of tissue fluid homeostasis and their dysfunction contributes to several human diseases. The activin receptor-like kinase 1 (ALK1) is a transforming growth factor-ß family type 1 receptor that is expressed on both blood and lymphatic endothelial cells (LECs). Its high-affinity ligand, bone morphogenetic protein 9 (BMP9), has been shown to be critical for retinal angiogenesis. The aim of this work was to investigate whether BMP9 could play a role in lymphatic development. We found that Bmp9 deficiency in mice causes abnormal lymphatic development. Bmp9-knockout (KO) pups presented hyperplastic mesenteric collecting vessels that maintained LYVE-1 expression. In accordance with this result, we found that BMP9 inhibited LYVE-1 expression in LECs in an ALK1-dependent manner. Bmp9-KO pups also presented a significant reduction in the number and in the maturation of mesenteric lymphatic valves at embryonic day 18.5 and at postnatal days 0 and 4. Interestingly, the expression of several genes known to be involved in valve formation (Foxc2, Connexin37, EphrinB2, and Neuropilin1) was upregulated by BMP9 in LECS. Finally, we demonstrated that Bmp9-KO neonates and adult mice had decreased lymphatic draining efficiency. These data identify BMP9 as an important extracellular regulator in the maturation of the lymphatic vascular network affecting valve development and lymphatic vessel function.


Asunto(s)
Factor 2 de Diferenciación de Crecimiento/fisiología , Linfangiogénesis/genética , Vasos Linfáticos/fisiología , Mesenterio/embriología , Animales , Animales Recién Nacidos , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Factor 2 de Diferenciación de Crecimiento/genética , Factor 2 de Diferenciación de Crecimiento/metabolismo , Humanos , Linfangiogénesis/fisiología , Vasos Linfáticos/metabolismo , Proteínas de Transporte de Membrana , Mesenterio/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
Blood ; 119(14): 3295-305, 2012 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-22343916

RESUMEN

Two distinct types of Flk-1(+) mesoderm, hemangiogenic and cardiogenic, are thought to contribute to blood, vessel, and cardiac cell lineages. However, our understanding of how Flk-1(+) mesoderm is specified is currently limited. In the present study, we investigated whether ER71, an Ets transcription factor essential for hematopoietic and endothelial cell lineage development, could modulate the hemangiogenic or cardiogenic outcome of the Flk-1(+) mesoderm. We show that Flk-1(+) mesoderm can be divided into Flk-1(+)PDGFRα(-) hemangiogenic and Flk-1(+)PDGFRα(+) cardiogenic mesoderm. ER71-deficient embryonic stem cells produced only the Flk-1(+)PDGFRα(+) cardiogenic mesoderm, which generated SMCs and cardiomyocytes. Enforced ER71 expression in the wild-type embryonic stem cells skewed toward the Flk-1(+)PDGFRα(-) mesoderm formation, which generated hematopoietic and endothelial cells. Whereas hematopoietic and endothelial cell genes were positively regulated by ER71, cardiac and Wnt signaling pathway genes were negatively regulated by ER71. We show that ER71 could inhibit Wnt signaling in VE-cadherin-independent as well as VE-cadherin-dependent VE-cadherin/ß-catenin/Flk-1 complex formation. Enforced ß-catenin could rescue cardiogenic mesoderm in the context of ER71 overexpression. In contrast, ER71-deficient Flk-1(+) mesoderm displayed enhanced Wnt signaling, which was reduced by ER71 re-introduction. We provide the molecular basis for the antagonistic relationship between hemangiogenic and cardiogenic mesoderm specification by ER71 and Wnt signaling.


Asunto(s)
Mesodermo/metabolismo , Miocitos Cardíacos/metabolismo , Neovascularización Fisiológica , Factores de Transcripción/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Vía de Señalización Wnt , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular , Análisis por Conglomerados , Células Madre Embrionarias/metabolismo , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos del Músculo Liso/metabolismo , Neovascularización Fisiológica/genética , Unión Proteica , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factores de Transcripción/genética , beta Catenina/genética , beta Catenina/metabolismo
8.
J Cell Physiol ; 227(11): 3593-602, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22287283

RESUMEN

The lymphatic vasculature is essential for the maintenance of tissue fluid, immune surveillance, and dissemination of metastasis. Recently, several models for lymphatic vascular research and markers specific for lymphatic endothelium have been characterized. Despite these significant achievements, our understanding of the early lymphatic development is still rather limited. The purpose of the study was to further define early lymphatic differentiation regulatory pathways. In the present study, we have developed conditions leading to lymphatic endothelial cell differentiation under both serum-rich and serum-free conditions, using the coculture system of Flk-1-positive vascular precursors derived from murine embryonic stem (ES) cells grown on an OP9 stromal cell layer. In this work, we also identified Transforming Growth Factor-ß1 (TGFß1) as a negative regulator of lymphvasculogenesis from ES-derived vascular progenitors. Finally, we could show that TGFß1 addition decreases COUP-TFII and Sox18 mRNA levels, which are two transcription factors known to be involved in early lymphatic endothelial differentiation. Taken together these findings support the concept that manipulating the TGFß signaling pathway may represent an interesting target to favor lymphatic endothelial cell expansion for cell replacement strategies.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Células Endoteliales , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Factor de Transcripción COUP II/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular , Linaje de la Célula/genética , Técnicas de Cocultivo , Medio de Cultivo Libre de Suero , Células Madre Embrionarias/fisiología , Células Endoteliales/citología , Células Endoteliales/fisiología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Glicoproteínas/metabolismo , Proteínas de Transporte de Membrana , Ratones , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Factores de Transcripción SOXF/metabolismo , Transducción de Señal , Células del Estroma/citología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
9.
Bull Cancer ; 94(10): 881-6, 2007 Oct.
Artículo en Francés | MEDLINE | ID: mdl-17964982

RESUMEN

Numerous data show a functional link between lymphangiogenesis, lymph node invasion by tumoral cells and metastasis. During the last decade, the identification of lymphatic endothelial cell-specific markers has allowed the investigation of lymphangiogenesis regulatory mechanisms and the analysis of its involvement in tumoral progression. Among regulatory systems, the growth factors VEGF-C and D, that bind and activate their common receptor VEGFR3, appear to play an important role in this process. Therapeutic strategies targeting this pathway or, in a general manner, aiming at inhibiting tumoral lymphangiogenesis are now considered to block the development of tumoral metastasis. Further fundamental and clinical studies are clearly needed to establish the pronostic value of lymphangiogenesis and to validate anti-lymphangiogenic therapies in the treatment of metastatic cancers.


Asunto(s)
Linfangiogénesis/fisiología , Proteínas de Neoplasias/fisiología , Progresión de la Enfermedad , Humanos , Linfangiogénesis/inmunología , Metástasis Linfática , Macrófagos/fisiología , Invasividad Neoplásica , Proteínas de Neoplasias/antagonistas & inhibidores , Factor C de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor C de Crecimiento Endotelial Vascular/fisiología , Factor D de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor D de Crecimiento Endotelial Vascular/fisiología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 3 de Factores de Crecimiento Endotelial Vascular/fisiología
10.
BMC Biotechnol ; 7: 20, 2007 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-17437635

RESUMEN

BACKGROUND: Angiogenesis assays are important tools for the identification of regulatory molecules and the potential development of therapeutic strategies to modulate neovascularization. Although numerous in vitro angiogenesis models have been developed in the past, they exhibit limitations since they do not recapitulate the entire angiogenic process or correspond to multi-step procedures that are not easy to use. Convenient, reliable, easily quantifiable and physiologically relevant assays are still needed for pharmacological screenings of angiogenesis. RESULTS: Here, we have optimized an angiogenesis model based on ES cell differentiation for screening experiments. We have established conditions leading to angiogenic sprouting of embryoid bodies during ES cell differentiation in type I three-dimensional collagen gels. Immunostaining experiments carried out during these cultures showed the formation of numerous buds comprising CD31 positive cells, after 11 days of culture of ES cells. Moreover, this one-step model has been validated in response to activators and inhibitors of angiogenesis. Sprouting was specifically stimulated in the presence of VEGF and FGF2. Alternatively, endothelial sprouting induced by angiogenic activators was inhibited by angiogenesis inhibitors such as angiostatin, TGFbeta and PF4. Sprouting angiogenesis can be easily quantified by image analysis after immunostaining of endothelial cells with CD31 pan-endothelial marker. CONCLUSION: Taken together, these data clearly validate that this one-step ES differentiation model constitutes a simple and versatile angiogenesis system that should facilitate, in future investigations, the screening of both activators and inhibitors of angiogenesis.


Asunto(s)
Inductores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/administración & dosificación , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacos , Animales , Bioensayo/métodos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Endoteliales/fisiología , Ratones , Neovascularización Fisiológica/fisiología , Células Madre/fisiología
11.
J Cell Physiol ; 213(1): 27-35, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17450519

RESUMEN

During embryogenesis, the formation of blood vessels proceeds by both vasculogenesis and angiogenesis. Both processes appear to be finely regulated. To date, factors and genes involved in the negative regulation of embryonic vasculogenesis remain largely unknown. Angiostatin is a proteolytic fragment of plasminogen that acts as an inhibitor of angiogenesis. In this study, we analyzed the potential role of angiostatin during early stages of embryonic stem (ES) cell endothelial in vitro differentiation, as a model of vasculogenesis. We found an early expression of the known angiostatin binding sites (angiomotin, alphav integrin and c-met oncogene) during ES cell differentiation. Nevertheless, we did not detect any significant effect of angiostatin on mesoderm induction and on differentiation commitment into cells of the endothelial lineage. In both control and angiostatin-treated conditions, the temporal and extent of formation of the Flk1 positive and Flk-1/CD31 (PECAM-1) positive cell populations were not significantly different. Quantitative RT-PCR experiments of endothelial gene expression (Flk-1, PECAM-1 and tie-2) confirm a lack of interference with early steps of endothelial differentiation in embryoid bodies. No evidence for an angiostatin effect on endothelial cord-like formation could be detected at later differentiation stages. On the other hand, angiostatin inhibits vascular endothelial growth factor-induced endothelial sprouting from embryoid bodies cultured in three dimensional type I collagen gels. Taken together, these findings support a selective inhibitory effect on the sprouting angiogenesis response for angiostatin during embryonic vascular development.


Asunto(s)
Angiostatinas/farmacología , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/embriología , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Angiostatinas/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Vasos Sanguíneos/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Cartilla de ADN/genética , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Neovascularización Fisiológica , Factor A de Crecimiento Endotelial Vascular
12.
Stem Cells ; 24(11): 2420-7, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17071858

RESUMEN

Transforming growth factor-beta1 (TGFbeta1) is a multipotent cytokine that is involved in the regulation of vasculogenesis and angiogenesis. However, the actions of TGFbeta1 on vascular cells in vitro and in vivo are extremely complex and still incompletely understood. The aim of the present study was to investigate the role of TGFbeta1 and its two type I receptors, activin receptor-like kinase-1 (ALK1) and ALK5, in an embryonic stem cell (ESC) differentiation model that recapitulates the developmental steps of vasculogenesis and sprouting angiogenesis. We show that TGFbeta1 increases endothelial cell differentiation in a vascular endothelial growth factor (VEGF)-independent manner and inhibits endothelial tube formation. Furthermore, we demonstrate that undifferentiated ESCs express ALK5 but do not express ALK1, with ALK1 being expressed only after day 5 of differentiation. Finally, we demonstrate that constitutively active forms of ALK1 and ALK5 both inhibit growth factor-induced endothelial sprouting from embryoid bodies. In conclusion, the use of this ESC differentiation model allowed us to propose the following model: at early stages of development, TGFbeta1, through the ALK5 receptor, is provasculogenic in a VEGF-independent manner. Later, in differentiated endothelial cells in which both ALK1 and ALK5 are expressed, both receptors are implicated in inhibition of sprouting angiogenesis.


Asunto(s)
Receptores de Activinas Tipo I/metabolismo , Vasos Sanguíneos/metabolismo , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Neovascularización Fisiológica , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo II , Animales , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/embriología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Madre Embrionarias/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Inmunohistoquímica , Cinética , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas , ARN Mensajero/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Crecimiento Transformador beta1/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Exp Cell Res ; 310(2): 392-400, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16202998

RESUMEN

Endothelial cells express two classical cadherins, VE-cadherin and N-cadherin. VE-cadherin is absolutely required for vascular morphogenesis, but N-cadherin is thought to participate in vessel stabilization by interacting with periendothelial cells during vessel formation. However, recent data suggest a more critical role for N-cadherin in endothelium that would regulate angiogenesis, in part by controlling VE-cadherin expression. In this study, we have assessed N-cadherin function in vascular development using an in vitro model derived from embryonic stem (ES) cell differentiation. We show that pluripotent ES cells genetically null for N-cadherin can differentiate normally into endothelial cells. In addition, sprouting angiogenesis was unaltered, suggesting that N-cadherin is not essential for the early events of angiogenesis. However, the lack of N-cadherin led to an impairment in pericyte covering of endothelial outgrowths. We conclude that N-cadherin is necessary neither for vasculogenesis nor proliferation and migration of endothelial cells but is required for the subsequent maturation of endothelial sprouts by interacting with pericytes.


Asunto(s)
Cadherinas/metabolismo , Neovascularización Fisiológica , Pericitos/fisiología , Células Madre Pluripotentes/citología , Animales , Cadherinas/análisis , Cadherinas/genética , Adhesión Celular , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Embrión de Mamíferos/citología , Células Endoteliales/química , Células Endoteliales/fisiología , Ratones , Mutación , Neovascularización Fisiológica/genética , Pericitos/química , Células Madre Pluripotentes/metabolismo
14.
J Cell Physiol ; 203(2): 362-71, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15493012

RESUMEN

The blood-brain barrier (BBB) is essential for maintaining brain homeostasis and low permeability. Because disruption of the BBB may contribute to many brain disorders, they are of considerable interests in the identification of the molecular mechanisms of BBB development and integrity. We here report that the giant protein AHNAK is expressed at the plasma membrane of endothelial cells (ECs) forming specific blood-tissue barriers, but is absent from the endothelium of capillaries characterized by extensive molecular exchanges between blood and extracellular fluid. In the brain, AHNAK is widely distributed in ECs with BBB properties, where it co-localizes with the tight junction protein ZO-1. AHNAK is absent from the permeable brain ECs of the choroid plexus and is down-regulated in permeable angiogenic ECs of brain tumors. In the choroid plexus, AHNAK accumulates at the tight junctions of the choroid epithelial cells that form the blood-cerebrospinal fluid (CSF) barrier. In EC cultures, the regulation of AHNAK expression and its localization corresponds to general criteria of a protein involved in barrier organization. AHNAK is up-regulated by angiopoietin-1 (Ang-1), a morphogenic factor that regulates brain EC permeability. In bovine cerebral ECs co-cultured with glial cells, AHNAK relocates from the cytosol to the plasma membrane when endothelial cells acquire BBB properties. Our results identify AHNAK as a protein marker of endothelial cells with barrier properties.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Encéfalo/irrigación sanguínea , Membrana Celular/metabolismo , Células Endoteliales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Angiopoyetina 1/metabolismo , Angiopoyetina 1/farmacología , Animales , Animales Recién Nacidos , Barrera Hematoencefálica/ultraestructura , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/ultraestructura , Bovinos , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Línea Celular , Membrana Celular/ultraestructura , Plexo Coroideo/metabolismo , Plexo Coroideo/ultraestructura , Técnicas de Cocultivo , Citosol/metabolismo , Células Endoteliales/ultraestructura , Masculino , Ratones , Neuroglía/metabolismo , Fosfoproteínas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Ratas , Ratas Wistar , Uniones Estrechas/metabolismo , Uniones Estrechas/ultraestructura , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología , Proteína de la Zonula Occludens-1
15.
J Biol Chem ; 279(4): 2927-36, 2004 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-14585835

RESUMEN

Endostatin (20 kDa) is a C-terminal proteolytic fragment of collagen XVIII that is localized in vascular basement membrane zones in various organs. It binds zinc, heparin/heparan sulfate, laminin, and sulfatides and inhibits angiogenesis and tumor growth. Here we determined the kinetics and affinity of the interaction of endostatin with heparin/heparan sulfate and investigated the effects of divalent cations on these interactions and on the biological activities of endostatin. The binding of human recombinant endostatin to heparin and heparan sulfate was studied by surface plasmon resonance using BIAcore technology and further characterized by docking and molecular dynamics simulations. Kinetic data, evaluated using a 1:1 interaction model, showed that heparan sulfate bound to and dissociated from endostatin faster than heparin and that endostatin bound to heparin and heparan sulfate with a moderate affinity (K(D) approximately 2 microm). Molecular modeling of the complex between endostatin and heparin oligosaccharides predicted that, compared with mutagenesis studies, two further arginine residues, Arg(47) and Arg(66), participated in the binding. The binding of endostatin to heparin and heparan sulfate required the presence of divalent cations. The addition of ZnCl(2) to endostatin enhanced its binding to heparan sulfate by approximately 40% as well as its antiproliferative effect on endothelial cells stimulated by fibroblast growth factor-2, suggesting that this activity is mediated by the binding of endostatin to heparan sulfate. In contrast, no increase in the antiangiogenic and anti-proliferative activities of endostatin promoted by vascular endothelial growth factor was observed upon the addition of zinc.


Asunto(s)
Endostatinas/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Cationes Bivalentes , Endostatinas/química , Heparina/química , Heparitina Sulfato/química , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie
17.
Am J Physiol Endocrinol Metab ; 284(1): E156-67, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12485811

RESUMEN

Although ACTH is important to adrenal growth and steroidogenesis, its role in vascular development and function has not been established in vivo. In the present study, we demonstrate the expression of mRNA for all four VEGF isoforms (mVEGF(120,144,164,188)) and for Flk-1/KDR and Flt-1 receptors in the mouse adrenal in vivo. Suppression of the pituitary adrenocortical axis by dexamethasone (0.5 mg x 100 g body wt(-1) x day(-1) during 6 days) induced a decrease in corticosterone levels, adrenal weights by 50% (P < 0.001), VEGF(188) mRNA, and Flk-1/KDR mRNA, whereas Flt-1 remained consistent during steroid treatment. A daily injection of ACTH-(1-39) restored the transcript for Flk-1/KDR and both VEGF(188) and plasma corticosterone to control levels. To gain further insights into the effects of ACTH, cultured endothelial cells (ECs) were treated with forskolin, which increases cAMP, the second messenger in ACTH action. We demonstrate that Flk-1/KDR protein expression was markedly increased by forskolin within 24-48 h of treatment in a dose-dependent manner (0.1-10 microM). The biological effect of ACTH on ECs was then tested by use of coincubations of fasciculata cells and ECs in 3D-collagen assay. Within 5-7 days of culture, ECs organized into multicellular structures that resemble networks of microvasculature, which characterize angiogenesis in vitro.


Asunto(s)
Glándulas Suprarrenales/patología , Hormona Adrenocorticotrópica/fisiología , Dexametasona/farmacología , Glucocorticoides/farmacología , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Corteza Suprarrenal/irrigación sanguínea , Glándulas Suprarrenales/efectos de los fármacos , Hormona Adrenocorticotrópica/farmacología , Animales , Atrofia , Secuencia de Bases , Western Blotting , Capilares/química , Capilares/citología , Células Cultivadas , Colforsina/farmacología , AMP Cíclico/farmacología , Factores de Crecimiento Endotelial/genética , Endotelio Vascular/química , Endotelio Vascular/citología , Femenino , Péptidos y Proteínas de Señalización Intercelular/genética , Linfocinas/genética , Ratones , Datos de Secuencia Molecular , Neovascularización Fisiológica , Isoformas de Proteínas/genética , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor A de Crecimiento Endotelial Vascular , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...