Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(29): e2405231121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38990952

RESUMEN

We report that ~1.8% of all mesothelioma patients and 4.9% of those younger than 55, carry rare germline variants of the BRCA1 associated RING domain 1 (BARD1) gene that were predicted to be damaging by computational analyses. We conducted functional assays, essential for accurate interpretation of missense variants, in primary fibroblasts that we established in tissue culture from a patient carrying the heterozygous BARD1V523A mutation. We found that these cells had genomic instability, reduced DNA repair, and impaired apoptosis. Investigating the underlying signaling pathways, we found that BARD1 forms a trimeric protein complex with p53 and SERCA2 that regulates calcium signaling and apoptosis. We validated these findings in BARD1-silenced primary human mesothelial cells exposed to asbestos. Our study elucidated mechanisms of BARD1 activity and revealed that heterozygous germline BARD1 mutations favor the development of mesothelioma and increase the susceptibility to asbestos carcinogenesis. These mesotheliomas are significantly less aggressive compared to mesotheliomas in asbestos workers.


Asunto(s)
Señalización del Calcio , Reparación del ADN , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Mesotelioma , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas , Humanos , Reparación del ADN/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Mesotelioma/genética , Señalización del Calcio/genética , Femenino , Masculino , Persona de Mediana Edad , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/genética , Fibroblastos/metabolismo , Amianto/toxicidad , Inestabilidad Genómica
2.
Cell Death Dis ; 15(6): 407, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862500

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is the most common causative agent of acute bacterial skin and skin-structure infections (ABSSSI), one of the major challenges to the health system worldwide. Although the use of antibiotics as the first line of intervention for MRSA-infected wounds is recommended, important side effects could occur, including cytotoxicity or immune dysregulation, thus affecting the repair process. Here, we show that the oxazolidinone antibiotic linezolid (LZD) impairs wound healing by aberrantly increasing interleukin 1 ß (IL-1ß) production in keratinocytes. Mechanistically, LZD triggers a reactive oxygen species (ROS)-independent mitochondrial damage that culminates in increased tethering between the endoplasmic reticulum (ER) and mitochondria, which in turn activates the NLR family pyrin domain-containing 3 (NLRP3) inflammasome complex by promoting its assembly to the mitochondrial surface. Downregulation of ER-mitochondria contact formation is sufficient to inhibit the LZD-driven NLRP3 inflammasome activation and IL-1ß production, restoring wound closure. These results identify the ER-mitochondria association as a key factor for NLRP3 activation and reveal a new mechanism in the regulation of the wound healing process that might be clinically relevant.


Asunto(s)
Retículo Endoplásmico , Inflamasomas , Interleucina-1beta , Mitocondrias , Proteína con Dominio Pirina 3 de la Familia NLR , Cicatrización de Heridas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Humanos , Animales , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Ratones Endogámicos C57BL
3.
Cell Calcium ; 113: 102759, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37210868

RESUMEN

Multiple forms of regulated cell death (RCD) have been characterized, each of which originates from the activation of a dedicated molecular machinery. RCD can occur in purely physiological settings or upon failing cellular adaptation to stress. Ca2+ions have been shown to physically interact with - and hence regulate - various components of the RCD machinery. Moreover, intracellular Ca2+ accumulation can promote organellar dysfunction to degree that can be overtly cytotoxic or sensitize cells to RCD elicited by other stressors. Here, we provide an overview of the main links between Ca2+and different forms of RCD, including apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, lysosome-dependent cell death, and parthanatos.


Asunto(s)
Apoptosis , Transducción de Señal , Humanos , Muerte Celular , Lisosomas/metabolismo , Necrosis/metabolismo
4.
Rev Physiol Biochem Pharmacol ; 185: 153-193, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-32789789

RESUMEN

Endoplasmic reticulum (ER)-mitochondria regions are specialized subdomains called also mitochondria-associated membranes (MAMs). MAMs allow regulation of lipid synthesis and represent hubs for ion and metabolite signaling. As these two organelles can module both the amplitude and the spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls several Ca2+-dependent pathways well known for their contribution to tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis. Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload, permeabilization of the mitochondrial outer membrane, and the release of mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the ER-mitochondria interface are being studied in depth as failure of apoptotic-dependent cell death is one of the predominant characteristics of cancer cells. However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation to tumor onset and progression have aroused the interest of the scientific community.In this review, we will describe how different MAMs-localized proteins modulate the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+ signaling.


Asunto(s)
Señalización del Calcio , Neoplasias , Humanos , Señalización del Calcio/fisiología , Mitocondrias , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Muerte Celular , Proteínas de la Membrana/metabolismo , Calcio/metabolismo , Neoplasias/metabolismo
5.
Biomedicines ; 10(7)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35884904

RESUMEN

Autophagy is an evolutionarily conserved and tightly regulated process that plays an important role in maintaining cellular homeostasis. It involves regulation of various genes that function to degrade unnecessary or dysfunctional cellular components, and to recycle metabolic substrates. Autophagy is modulated by many factors, such as nutritional status, energy level, hypoxic conditions, endoplasmic reticulum stress, hormonal stimulation and drugs, and these factors can regulate autophagy both upstream and downstream of the pathway. In cancer, autophagy acts as a double-edged sword depending on the tissue type and stage of tumorigenesis. On the one hand, autophagy promotes tumor progression in advanced stages by stimulating tumor growth. On the other hand, autophagy inhibits tumor development in the early stages by enhancing its tumor suppressor activity. Moreover, autophagy drives resistance to anticancer therapy, even though in some tumor types, its activation induces lethal effects on cancer cells. In this review, we summarize the biological mechanisms of autophagy and its dual role in cancer. In addition, we report the current understanding of autophagy in some cancer types with markedly high incidence and/or lethality, and the existing therapeutic strategies targeting autophagy for the treatment of cancer.

6.
Life (Basel) ; 11(5)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066065

RESUMEN

The heart is responsible for pumping blood, nutrients, and oxygen from its cavities to the whole body through rhythmic and vigorous contractions. Heart function relies on a delicate balance between continuous energy consumption and generation that changes from birth to adulthood and depends on a very efficient oxidative metabolism and the ability to adapt to different conditions. In recent years, mitochondrial dysfunctions were recognized as the hallmark of the onset and development of manifold heart diseases (HDs), including heart failure (HF). HF is a severe condition for which there is currently no cure. In this condition, the failing heart is characterized by a disequilibrium in mitochondrial bioenergetics, which compromises the basal functions and includes the loss of oxygen and substrate availability, an altered metabolism, and inefficient energy production and utilization. This review concisely summarizes the bioenergetics and some other mitochondrial features in the heart with a focus on the features that become impaired in the failing heart.

7.
Cell Calcium ; 92: 102308, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33096320

RESUMEN

As pivotal players in cellular metabolism, mitochondria have a double-faceted role in the final decision of cell fate. This is true for all cell types, but it is even more important and intriguing in the cancer setting. Mitochondria regulate cell fate in many diverse ways: through metabolism, by producing ATP and other metabolites deemed vital or detrimental for cancer cells; through the regulation of Ca2+ homeostasis, especially by the joint participation of the endoplasmic reticulum in a membranous tethering system for Ca2+ signaling called mitochondria-ER associated membranes (MAMs); and by regulating signaling pathways involved in the survival of cancer cells such as mitophagy. Recent studies have shown that mitochondria can also play a role in the regulation of inflammatory pathways in cancer cells, for example, through the release of mitochondrial DNA (mtDNA) involved in the activation of the cGAS-cGAMP-STING pathway. In this review, we aim to explore the role of mitochondria as decision makers in fostering cancer cell death or survival depending on the tumor cell stage and describe novel anticancer therapeutic strategies targeting mitochondria.


Asunto(s)
Linaje de la Célula , Mitocondrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal , Animales , Señalización del Calcio , Metabolismo Energético , Humanos
8.
Int Rev Cell Mol Biol ; 350: 119-196, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32138899

RESUMEN

Mitochondria and endoplasmic reticulum (ER) are fundamental in the control of cell physiology regulating several signal transduction pathways. They continuously communicate exchanging messages in their contact sites called MAMs (mitochondria-associated membranes). MAMs are specific microdomains acting as a platform for the sorting of vital and dangerous signals. In recent years increasing evidence reported that multiple scaffold proteins and regulatory factors localize to this subcellular fraction suggesting MAMs as hotspot signaling domains. In this review we describe the current knowledge about MAMs' dynamics and processes, which provided new correlations between MAMs' dysfunctions and human diseases. In fact, MAMs machinery is strictly connected with several pathologies, like neurodegeneration, diabetes and mainly cancer. These pathological events are characterized by alterations in the normal communication between ER and mitochondria, leading to deep metabolic defects that contribute to the progression of the diseases.


Asunto(s)
Diabetes Mellitus/metabolismo , Homeostasis , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Diabetes Mellitus/patología , Humanos , Neoplasias/patología , Enfermedades Neurodegenerativas/patología
9.
Cell Cycle ; 18(10): 1068-1083, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31032692

RESUMEN

Aberrations in mitochondrial Ca2+ homeostasis have been associated with different pathological conditions, including neurological defects, cardiovascular diseases, and, in the last years, cancer. With the recent molecular identification of the mitochondrial calcium uniporter (MCU) complex, the channel that allows Ca2+ accumulation into the mitochondrial matrix, alterations in the expression levels or functioning in one or more MCU complex members have been linked to different cancers and cancer-related phenotypes. In this review, we will analyze the role of the uniporter and mitochondrial Ca2+ derangements in modulating cancer cell sensitivity to death, invasiveness, and migratory capacity, as well as cancer progression in vivo. We will also discuss some critical points and contradictory results to highlight the consequence of MCU complex modulation in tumor development.


Asunto(s)
Canales de Calcio/fisiología , Calcio/metabolismo , Carcinogénesis/metabolismo , Mitocondrias/metabolismo , Animales , Canales de Calcio/química , Canales de Calcio/metabolismo , Línea Celular Tumoral , Movimiento Celular , Homeostasis , Humanos , Modelos Biológicos
11.
EMBO J ; 38(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30504268

RESUMEN

Although mitochondria play a multifunctional role in cancer progression and Ca2+ signaling is remodeled in a wide variety of tumors, the underlying mechanisms that link mitochondrial Ca2+ homeostasis with malignant tumor formation and growth remain elusive. Here, we show that phosphorylation at the N-terminal region of the mitochondrial calcium uniporter (MCU) regulatory subunit MICU1 leads to a notable increase in the basal mitochondrial Ca2+ levels. A pool of active Akt in the mitochondria is responsible for MICU1 phosphorylation, and mitochondrion-targeted Akt strongly regulates the mitochondrial Ca2+ content. The Akt-mediated phosphorylation impairs MICU1 processing and stability, culminating in reactive oxygen species (ROS) production and tumor progression. Thus, our data reveal the crucial role of the Akt-MICU1 axis in cancer and underscore the strategic importance of the association between aberrant mitochondrial Ca2+ levels and tumor development.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Neoplasias/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Células HEK293 , Células HeLa , Humanos , Ratones , Mitocondrias/metabolismo , Trasplante de Neoplasias , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación , Dominios Proteicos , Proteínas Proto-Oncogénicas c-akt/química , Ratas , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA