Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JACS Au ; 4(2): 697-712, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38425910

RESUMEN

The evaluation of Bacteroides vulgatus mpk (BVMPK) lipopolysaccharide (LPS) recognition by DC-SIGN, a key lectin in mediating immune homeostasis, has been here performed. A fine chemical dissection of BVMPK LPS components, attained by synthetic chemistry combined to spectroscopic, biophysical, and computational techniques, allowed to finely map the LPS epitopes recognized by DC-SIGN. Our findings reveal BVMPK's role in immune modulation via DC-SIGN, targeting both the LPS O-antigen and the core oligosaccharide. Furthermore, when framed within medical chemistry or drug design, our results could lead to the development of tailored molecules to benefit the hosts dealing with inflammatory diseases.

2.
Chem Commun (Camb) ; 58(86): 12086-12089, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36219150

RESUMEN

Selective DC-SIGN targeting vs. langerin might lead to anti-infective agents, given their counteracting effects upon infection by some pathogens. Here we show that multivalent sp2-iminosugar-containing mannobioside analogs can achieve total DC-SIGN selectivity by levering the canonic binding mode towards high-mannose oligosaccharide ligands, behaving as factual biomimics.


Asunto(s)
Biomimética , Lectinas de Unión a Manosa , Lectinas de Unión a Manosa/metabolismo , Antígenos CD/metabolismo , Sitios de Unión , Lectinas Tipo C/metabolismo , Unión Proteica
3.
PLoS Pathog ; 18(4): e1010458, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35395062

RESUMEN

Two-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae, a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models. However, it remains one of the least studied TCS in pneumococci and its functional role is still unclear. In this study, we demonstrate that TCS01 cooperates with a BceAB-type ABC transporter to sense and induce resistance to structurally-unrelated antimicrobial peptides of bacterial origin that all target undecaprenyl-pyrophosphate or lipid II, which are essential precursors of cell wall biosynthesis. Even though tcs01 and bceAB genes do not locate in the same gene cluster, disruption of either of them equally sensitized the bacterium to the same set of antimicrobial peptides. We show that the key function of TCS01 is to upregulate the expression of the transporter, while the latter appears the main actor in resistance. Electrophoretic mobility shift assays further demonstrated that the response regulator of TCS01 binds to the promoter region of the bceAB genes, implying a direct control of these genes. The BceAB transporter was overexpressed and purified from E. coli. After reconstitution in liposomes, it displayed substantial ATPase and GTPase activities that were stimulated by antimicrobial peptides to which it confers resistance to, revealing new functional features of a BceAB-type transporter. Altogether, this inducible defense mechanism likely contributes to the survival of the opportunistic microorganism in the human host, in which competition among commensal microorganisms is a key determinant for effective host colonization and invasive path.


Asunto(s)
Péptidos Antimicrobianos , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Streptococcus pneumoniae , Péptidos Antimicrobianos/farmacología , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Escherichia coli/metabolismo , Humanos , Proteínas de Transporte de Membrana/metabolismo , Péptidos/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
4.
Mol Pharm ; 19(1): 235-245, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34927439

RESUMEN

Alterations in glycosylation cause the emergence of tumor-associated carbohydrate antigens (TACAs) during tumorigenesis. Truncation of O-glycans reveals the Thomsen nouveau (Tn) antigen, an N-acetylgalactosamine (GalNAc) frequently attached to serine or threonine amino acids, that is accessible on the surface of cancer cells but not on healthy cells. Interestingly, GalNac can be recognized by macrophage galactose lectin (MGL), a type C lectin receptor expressed in immune cells. In this study, recombinant MGL fragments were tested in vitro for their cancer cell-targeting efficiency by flow cytometry and confocal microscopy and in vivo after administration of fluorescent MGL to tumor-bearing mice. Our results demonstrate the ability of MGL to target Tn-positive human tumors without inducing toxicity. This outcome makes MGL, a fragment of a normal human protein, the first vector candidate for in vivo diagnosis and imaging of human tumors and, possibly, for therapeutic applications.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Lectinas Tipo C/metabolismo , Células A549 , Animales , Femenino , Citometría de Flujo , Células HT29 , Humanos , Ratones , Ratones Desnudos , Microscopía Confocal , Trasplante de Neoplasias , Proteínas Recombinantes , Esferoides Celulares , Resonancia por Plasmón de Superficie
5.
ACS Chem Biol ; 16(11): 2547-2559, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34550690

RESUMEN

MsrPQ is a new type of methionine sulfoxide reductase (Msr) system found in bacteria. It is specifically involved in the repair of periplasmic methionine residues that are oxidized by hypochlorous acid. MsrP is a periplasmic molybdoenzyme that carries out the Msr activity, whereas MsrQ, an integral membrane-bound hemoprotein, acts as the physiological partner of MsrP to provide electrons for catalysis. Although MsrQ (YedZ) was associated since long with a protein superfamily named FRD (ferric reductase domain), including the eukaryotic NADPH oxidases and STEAP proteins, its biochemical properties are still sparsely documented. Here, we have investigated the cofactor content of the E. coli MsrQ and its mechanism of reduction by the flavin reductase Fre. We showed by electron paramagnetic resonance (EPR) spectroscopy that MsrQ contains a single highly anisotropic low-spin (HALS) b-type heme located on the periplasmic side of the membrane. We further demonstrated that MsrQ holds a flavin mononucleotide (FMN) cofactor that occupies the site where a second heme binds in other members of the FDR superfamily on the cytosolic side of the membrane. EPR spectroscopy indicates that the FMN cofactor can accommodate a radical semiquinone species. The cytosolic flavin reductase Fre was previously shown to reduce the MsrQ heme. Here, we demonstrated that Fre uses the FMN MsrQ cofactor as a substrate to catalyze the electron transfer from cytosolic NADH to the heme. Formation of a specific complex between MsrQ and Fre could favor this unprecedented mechanism, which most likely involves transfer of the reduced FMN cofactor from the Fre active site to MsrQ.


Asunto(s)
Enzimas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de la Membrana/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Mononucleótido de Flavina/metabolismo , Cinética , Especificidad por Sustrato
6.
Org Biomol Chem ; 19(34): 7357-7362, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34387640

RESUMEN

Glycodendron microarrays with defined valency have been constructed by on-chip synthesis on hydrophobic indium tin oxide (ITO) coated glass slides and employed in lectin-carbohydrate binding studies with several plant and human lectins. Glycodendrons presenting sugar epitopes at different valencies were prepared by spotwise strain-promoted azide-alkyne cycloaddition (SPAAC) between immobilised cyclooctyne dendrons and azide functionalised glycans. The non-covalent immobilisation of dendrons on the ITO surface by hydrophobic interaction allowed us to study dendron surface density and SPAAC conversion rate by in situ MALDI-TOF MS analysis. By diluting the dendron surface density we could study how the carbohydrate-lectin interactions became exclusively dependant on the valency of the immobilised glycodendron.


Asunto(s)
Lectinas
7.
PLoS Pathog ; 17(5): e1009576, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34015061

RESUMEN

The efficient spread of SARS-CoV-2 resulted in a unique pandemic in modern history. Despite early identification of ACE2 as the receptor for viral spike protein, much remains to be understood about the molecular events behind viral dissemination. We evaluated the contribution of C-type lectin receptors (CLRS) of antigen-presenting cells, widely present in respiratory mucosa and lung tissue. DC-SIGN, L-SIGN, Langerin and MGL bind to diverse glycans of the spike using multiple interaction areas. Using pseudovirus and cells derived from monocytes or T-lymphocytes, we demonstrate that while virus capture by the CLRs examined does not allow direct cell infection, DC/L-SIGN, among these receptors, promote virus transfer to permissive ACE2+ Vero E6 cells. A glycomimetic compound designed against DC-SIGN, enable inhibition of this process. These data have been then confirmed using authentic SARS-CoV-2 virus and human respiratory cell lines. Thus, we described a mechanism potentiating viral spreading of infection.


Asunto(s)
COVID-19/transmisión , Lectinas Tipo C/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Antígenos CD/metabolismo , COVID-19/prevención & control , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Chlorocebus aethiops , Humanos , Células Jurkat , Pulmón/metabolismo , Lectinas de Unión a Manosa/metabolismo , Manósidos/farmacología , Unión Proteica/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , Mucosa Respiratoria/metabolismo , Células Vero
8.
J Drug Target ; 29(1): 99-107, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32936032

RESUMEN

Liver is the main organ for metabolism but is also subject to various pathologies, from viral, genetic, cancer or metabolic origin. There is thus a crucial need to develop efficient liver-targeted drug delivery strategies. Asialoglycoprotein receptor (ASGPR) is a C-type lectin expressed in the hepatocyte plasma membrane that efficiently endocytoses glycoproteins exposing galactose (Gal) or N-acetylgalactosamine (GalNAc). Its targeting has been successfully used to drive the uptake of small molecules decorated with three or four GalNAc, thanks to an optimisation of their spatial arrangement. Herein, we assessed the biological properties of highly stable nanostructured lipid carriers (NLC) made of FDA-approved ingredients and formulated with increasing amounts of GalNAc. Cellular studies showed that a high density of GalNAc was required to favour hepatocyte internalisation via the ASGPR pathway. Interaction studies using surface plasmon resonance and the macrophage galactose-lectin as GalNAc-recognising lectin confirmed the need of high GalNAc density for specific recognition of these NLC. This work is the first step for the development of efficient nanocarriers for prolonged liver delivery of active compounds.


Asunto(s)
Acetilgalactosamina/metabolismo , Portadores de Fármacos/metabolismo , Endocitosis/fisiología , Hepatocitos/metabolismo , Lectinas/metabolismo , Nanoestructuras , Acetilgalactosamina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Endocitosis/efectos de los fármacos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Humanos , Lípidos/administración & dosificación , Nanoestructuras/administración & dosificación
9.
Chemistry ; 26(56): 12818-12830, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-32939912

RESUMEN

Due to their interactions with C-type lectin receptors (CLRs), glycans from the helminth Schistosoma mansoni represent promising leads for treatment of autoimmune diseases, allergies or cancer. We chemo-enzymatically synthesized nine O-glycans based on the two predominant O-glycan cores observed in the infectious stages of schistosomiasis, the mucin core 2 and the S. mansoni core. The O-glycans were fucosylated next to a selection of N-glycans directly on a microarray slide using a recombinant fucosyltransferase and GDP-fucose or GDP-6-azidofucose as donor. Binding assays with fluorescently labelled human CLRs DC-SIGN, DC-SIGNR and MGL revealed the novel O-glycan O8 as the best ligand for MGL from our panel. Significant binding to DC-SIGN was also found for azido-fucosylated glycans. Contrasting binding specificities were observed between the monovalent carbohydrate recognition domain (CRD) and the tetravalent extracellular domain (ECD) of DC-SIGNR.


Asunto(s)
Receptores de Superficie Celular/metabolismo , Moléculas de Adhesión Celular , Humanos , Lectinas Tipo C , Ligandos , Polisacáridos
10.
Front Cell Dev Biol ; 8: 556, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760719

RESUMEN

Langerhans cells (LCs) are antigen-presenting cells that reside in the skin. They uniquely express high levels of the C-type lectin receptor Langerin (CD207), which is an attractive target for antigen delivery in immunotherapeutic vaccination strategies against cancer. We here assess a library of 20 synthetic, well-defined mannoside clusters, built up from one, two, and three of six monomannosides, dimannosides, or trimannosides, appended to an oligopeptide backbone, for binding with Langerin using surface plasmon resonance and flow cytometric quantification. It is found that Langerin binding affinity increases with increasing number of mannosides. Hexavalent presentation of the mannosides resulted in binding affinities ranging from 3 to 12 µM. Trivalent presentation of the dimannosides and trimannosides led to Langerin affinity in the same range. The model melanoma gp100 antigenic peptide was subsequently equipped with a hexavalent cluster of the dimannosides and trimannosides as targeting moieties. Surprisingly, although the bifunctional conjugates were taken up in LCs in a Langerin-dependent manner, limited antigen presentation to cytotoxic T cells was observed. These results indicate that targeting glycan moieties on immunotherapeutic vaccines should not only be validated for target binding, but also on the continued effects on biology, such as antigen presentation to both CD8+ and CD4+ T cells.

11.
Org Biomol Chem ; 18(25): 4763-4772, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32608454

RESUMEN

Multivalent interactions between complex carbohydrates and oligomeric C-type lectins govern a wide range of immune responses. Up to date, standard SPR (surface plasmon resonance) competitive assays have largely been to evaluate binding properties from monosaccharide units (low affinity, mM) to multivalent elemental antagonists (moderate affinity, µM). Herein, we report typical case-studies of SPR competitive assays showing that they underestimate the potency of glycoclusters to inhibit the interaction between DC-SIGN and immobilized glycoconjugates. This paper describes the design and implementation of a SPR direct interaction over DC-SIGN oriented surfaces, extendable to other C-type lectin surfaces as such Langerin. This setup provides an overview of intrinsic avidity generation emanating simultaneously from multivalent glycoclusters and from DC-SIGN tetramers organized in nanoclusters at the cell membrane. To do so, covalent biospecific capture of DC-SIGN via StreptagII/StrepTactin interaction preserves tetrameric DC-SIGN, accessibility and topology of its active sites, that would have been dissociated using standard EDC-NHS procedure under acidic conditions. From the tested glycoclusters libraries, we demonstrated that the scaffold architecture, the valency and the glycomimetic-based ligand are crucial to reach nanomolar affinities for DC-SIGN. The glycocluster 3·D illustrates the tightest binding partner in this set for a DC-SIGN surface (KD = 18 nM). Moreover, the selectivity at monovalent scale of glycomimetic D can be easily analyzed at multivalent scale comparing its binding over different C-type lectin immobilized surfaces. This approach may give rise to novel insights into the multivalent binding mechanisms responsible for avidity and make a major contribution to the full characterization of the binding potency of promising specific and multivalent immodulators.


Asunto(s)
Moléculas de Adhesión Celular/química , Glicoconjugados/química , Lectinas Tipo C/química , Receptores de Superficie Celular/química , Humanos , Conformación Molecular , Resonancia por Plasmón de Superficie , Propiedades de Superficie
12.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722514

RESUMEN

C-type lectin receptor (CLR)/carbohydrate recognition occurs through low affinity interactions. Nature compensates that weakness by multivalent display of the lectin carbohydrate recognition domain (CRD) at the cell surface. Mimicking these low affinity interactions in vitro is essential to better understand CLR/glycan interactions. Here, we present a strategy to create a generic construct with a tetrameric presentation of the CRD for any CLR, termed TETRALEC. We applied our strategy to a naturally occurring tetrameric CRD, DC-SIGNR, and compared the TETRALEC ligand binding capacity by synthetic N- and O-glycans microarray using three different DC-SIGNR constructs i) its natural tetrameric counterpart, ii) the monomeric CRD and iii) a dimeric Fc-CRD fusion. DC-SIGNR TETRALEC construct showed a similar binding profile to that of its natural tetrameric counterpart. However, differences observed in recognition of low affinity ligands underlined the importance of the CRD spatial arrangement. Moreover, we further extended the applications of DC-SIGNR TETRALEC to evaluate CLR/pathogens interactions. This construct was able to recognize heat-killed Candida albicans by flow cytometry and confocal microscopy, a so far unreported specificity of DC-SIGNR. In summary, the newly developed DC-SIGNR TETRALEC tool proved to be useful to unravel novel CLR/glycan interactions, an approach which could be applied to other CLRs.


Asunto(s)
Candida albicans/metabolismo , Citometría de Flujo , Fragmentos Fc de Inmunoglobulinas/química , Lectinas Tipo C/química , Proteínas Recombinantes de Fusión/química , Candida albicans/citología , Fragmentos Fc de Inmunoglobulinas/genética , Lectinas Tipo C/genética , Ligandos , Proteínas Recombinantes de Fusión/genética
13.
Biophys J ; 119(3): 605-618, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32668232

RESUMEN

Small angle neutron scattering (SANS) provides a method to obtain important low-resolution information for integral membrane proteins (IMPs), challenging targets for structural determination. Specific deuteration furnishes a "stealth" carrier for the solubilized IMP. We used SANS to determine a structural envelope of SpNOX, the Streptococcus pneumoniae NADPH oxidase (NOX), a prokaryotic model system for exploring structure and function of eukaryotic NOXes. SpNOX was solubilized in the detergent lauryl maltose neopentyl glycol, which provides optimal SpNOX stability and activity. Using deuterated solvent and protein, the lauryl maltose neopentyl glycol was experimentally undetected in SANS. This affords a cost-effective SANS approach for obtaining novel structural information on IMPs. Combining SANS data with molecular modeling provided a first, to our knowledge, structural characterization of an entire NOX enzyme. It revealed a distinctly less compact structure than that predicted from the docking of homologous crystal structures of the separate transmembrane and dehydrogenase domains, consistent with a flexible linker connecting the two domains.


Asunto(s)
NADPH Oxidasas , Difracción de Neutrones , Proteínas de la Membrana , Oxidación-Reducción , Dispersión del Ángulo Pequeño
14.
Biomacromolecules ; 21(7): 2726-2734, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32525659

RESUMEN

Chondroitin sulfate type-E (CS-E) is a sulfated polysaccharide that shows several interesting biological activities, such as modulation of the neuronal growth factor signaling and its interaction with langerin, a C-type lectin with a crucial role in the immunological system. However, applications of CS-E are hampered by the typical heterogeneous structure of the natural polysaccharide. Well-defined, homogeneous CS-E analogues are highly demanded. Here, we report the synthesis of monodispersed, structurally well-defined second-generation glycodendrimers displaying up to 18 CS-E disaccharide units. These complex multivalent systems have a molecular weight and a number of disaccharide repeating units comparable with those of the natural polysaccharides. In addition, surface plasmon resonance experiments revealed a calcium-independent interaction between these glycodendrimers and langerin, in the micromolar range, highlighting the utility of these compounds as CS-E mimetics.


Asunto(s)
Sulfatos de Condroitina , Dendrímeros , Disacáridos , Ligandos , Polisacáridos
15.
Front Chem ; 7: 650, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31637232

RESUMEN

Dendritic cells (DCs) are important initiators of adaptive immunity, and they possess a multitude of Pattern Recognition Receptors (PRR) to generate an adequate T cell mediated immunity against invading pathogens. PRR ligands are frequently conjugated to tumor-associated antigens in a vaccination strategy to enhance the immune response toward such antigens. One of these PPRs, DC-SIGN, a member of the C-type lectin receptor (CLR) family, has been extensively targeted with Lewis structures and mannose glycans, often presented in multivalent fashion. We synthesized a library of well-defined mannosides (mono-, di-, and tri-mannosides), based on known "high mannose" structures, that we presented in a systematically increasing number of copies (n = 1, 2, 3, or 6), allowing us to simultaneously study the effect of mannoside configuration and multivalency on DC-SIGN binding via Surface Plasmon Resonance (SPR) and flow cytometry. Hexavalent presentation of the clusters showed the highest binding affinity, with the hexa-α1,2-di-mannoside being the most potent ligand. The four highest binding hexavalent mannoside structures were conjugated to a model melanoma gp100-peptide antigen and further equipped with a Toll-like receptor 7 (TLR7)-agonist as adjuvant for DC maturation, creating a trifunctional vaccine conjugate. Interestingly, DC-SIGN affinity of the mannoside clusters did not directly correlate with antigen presentation enhancing properties and the α1,2-di-mannoside cluster with the highest binding affinity in our library even hampered T cell activation. Overall, this systematic study has demonstrated that multivalent glycan presentation can improve DC-SIGN binding but enhanced binding cannot be directly translated into enhanced antigen presentation and the sole assessment of binding affinity is thus insufficient to determine further functional biological activity. Furthermore, we show that well-defined antigen conjugates combining two different PRR ligands can be generated in a modular fashion to increase the effectiveness of vaccine constructs.

16.
Chemistry ; 25(64): 14659-14668, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31469191

RESUMEN

Chemical modification of pseudo-dimannoside ligands guided by fragment-based design allowed for the exploitation of an ammonium-binding region in the vicinity of the mannose-binding site of DC-SIGN, leading to the synthesis of a glycomimetic antagonist (compound 16) of unprecedented affinity and selectivity against the related lectin langerin. Here, the computational design of pseudo-dimannoside derivatives as DC-SIGN ligands, their synthesis, their evaluation as DC-SIGN selective antagonists, the biophysical characterization of the DC-SIGN/16 complex, and the structural basis for the ligand activity are presented. On the way to the characterization of this ligand, an unusual bridging interaction within the crystals shed light on the plasticity and potential secondary binding sites within the DC-SIGN carbohydrate recognition domain.

17.
Chemistry ; 24(54): 14448-14460, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-29975429

RESUMEN

A library of mannose- and fucose-based glycomimetics was synthesized and screened in a microarray format against a set of C-type lectin receptors (CLRs) that included DC-SIGN, DC-SIGNR, langerin, and dectin-2. Glycomimetic ligands able to interact with dectin-2 were identified for the first time. Comparative analysis of binding profiles allowed their selectivity against other CLRs to be probed.

18.
ACS Chem Biol ; 13(8): 2269-2279, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29894153

RESUMEN

Here, we describe a strategy for the rapid preparation of pure positional isomers of complex N-glycans to complement an existing array comprising a larger number of N-glycans and smaller glycan structures. The expanded array was then employed to study context-dependent binding of structural glycan fragments by monoclonal antibodies and C-type lectins. A partial enzymatic elongation of semiprotected core structures was combined with the protecting-group-aided separation of positional isomers by preparative HPLC. This methodology, which avoids the laborious chemical differentiation of antennae, was employed for the preparation of eight biantennary N-glycans with Galß1,4GlcNAc (LN), GalNAcß1,4GlcNAc (LDN), and GalNAcß1,4[Fucα1,3]GlcNAc (LDNF) motifs presented on either one or both antennae. Screening of the binding specificities of three anti-LeX monoclonal IgM antibodies raised against S. mansoni glycans and three C-type lectin receptors of the innate immune system, namely DC-SIGN, DC-SIGNR, and LSECtin, revealed a surprising context-dependent fine specificity for the recognition of the glycan motifs. Moreover, we observed a striking selection of one individual positional isomer over the other by the C-type lectins tested, underscoring the biological relevance of the structural context of glycan elements in molecular recognition.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Lectinas Tipo C/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Animales , Biocatálisis , Moléculas de Adhesión Celular/metabolismo , Humanos , Isomerismo , Ratones , Receptores de Superficie Celular/metabolismo , Receptores Mitogénicos/metabolismo
19.
Nat Commun ; 8(1): 1953, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29209037

RESUMEN

The vast majority of phages, bacterial viruses, possess a tail ensuring host recognition, cell wall perforation and safe viral DNA transfer from the capsid to the host cytoplasm. Long flexible tails are formed from the tail tube protein (TTP) polymerised as hexameric rings around and stacked along the tape measure protein (TMP). Here, we report the crystal structure of T5 TTP pb6 at 2.2 Å resolution. Pb6 is unusual in forming a trimeric ring, although structure analysis reveals homology with all classical TTPs and related tube proteins of bacterial puncturing devices (type VI secretion system and R-pyocin). Structures of T5 tail tubes before and after interaction with the host receptor were determined by cryo-electron microscopy at 6 Å resolution. Comparison of these two structures reveals that host-binding information is not propagated to the capsid through conformational changes in the tail tube, suggesting a role of the TMP in this information transduction process.


Asunto(s)
Bacteriófagos/ultraestructura , ADN Viral/metabolismo , Siphoviridae/ultraestructura , Proteínas de la Cola de los Virus/ultraestructura , Cápside/metabolismo , Microscopía por Crioelectrón , Citoplasma/metabolismo , Escherichia coli , Homología Estructural de Proteína
20.
Free Radic Biol Med ; 113: 1-15, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28916473

RESUMEN

NADPH oxidases (NOX) have many biological roles, but their regulation to control production of potentially toxic ROS molecules remains unclear. A previously identified insertion sequence of 21 residues (called NIS) influences NOX activity, and its predicted flexibility makes it a good candidate for providing a dynamic switch controlling the NOX active site. We constructed NOX2 chimeras in which NIS had been deleted or exchanged with those from other NOXs (NIS1, 3 and 4). All contained functional heme and were expressed normally at the plasma membrane of differentiated PLB-985 cells. However, NOX2-ΔNIS and NOX2-NIS1 had neither NADPH-oxidase nor reductase activity and exhibited abnormal translocation of p47phox and p67phox to the phagosomal membrane. This suggested a functional role of NIS. Interestingly after activation, NOX2-NIS3 cells exhibited superoxide overproduction compared with wild-type cells. Paradoxically, the Vmax of purified unstimulated NOX2-NIS3 was only one-third of that of WT-NOX2. We therefore hypothesized that post-translational events regulate NOX2 activity and differ between NOX2-NIS3 and WT-NOX2. We demonstrated that Ser486, a phosphorylation target of ataxia telangiectasia mutated kinase (ATM kinase) located in the NIS of NOX2 (NOX2-NIS), was phosphorylated in purified cytochrome b558 after stimulation with phorbol 12-myristate-13-acetate (PMA). Moreover, ATM kinase inhibition and a NOX2 Ser486Ala mutation enhanced NOX activity whereas a Ser486Glu mutation inhibited it. Thus, the absence of Ser486 in NIS3 could explain the superoxide overproduction in the NOX2-NIS3 mutant. These results suggest that PMA-stimulated NOX2-NIS phosphorylation by ATM kinase causes a dynamic switch that deactivates NOX2 activity. We hypothesize that this downregulation is defective in NOX2-NIS3 mutant because of the absence of Ser486.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Regulación de la Expresión Génica , NADPH Oxidasa 2/metabolismo , Fagocitos/metabolismo , Procesamiento Proteico-Postraduccional , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , NADPH Oxidasa 2/genética , Fagocitos/enzimología , Fosforilación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...