Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-37808870

RESUMEN

Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of KCNQ channel currents emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.

2.
Front Physiol ; 13: 805909, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35514336

RESUMEN

Heart rate is accelerated to match physiological demands through the action of noradrenaline on the cardiac pacemaker. Noradrenaline is released from sympathetic terminals and activates ß1-and ß2-adrenergic receptors (ΑRs) located at the plasma membrane of pacemaker cells. L-type calcium channels are one of the main downstream targets potentiated by the activation of ß-ARs. For this signaling to occur, L-type calcium channels need to be located in close proximity to ß-ARs inside caveolae. Although it is known that aging causes a slowdown of the pacemaker rate and a reduction in the response of pacemaker cells to noradrenaline, there is a lack of in-depth mechanistic insights into these age-associated changes. Here, we show that aging affects the formation and function of adrenergic signaling microdomains inside caveolae. By evaluating the ß1 and ß2 components of the adrenergic regulation of the L-type calcium current, we show that aging does not alter the regulation mediated by ß1-ARs but drastically impairs that mediated by ß2-ARs. We studied the integrity of the signaling microdomains formed between L-type calcium channels and ß-ARs by combining high-resolution microscopy and proximity ligation assays. We show that consistent with the electrophysiological data, aging decreases the physical association between ß2-ARs and L-type calcium channels. Interestingly, this reduction is associated with a decrease in the association of L-type calcium channels with the scaffolding protein AKAP150. Old pacemaker cells also have a reduction in caveolae density and in the association of L-type calcium channels with caveolin-3. Together the age-dependent alterations in caveolar formation and the nano-organization of ß2-ARs and L-type calcium channels result in a reduced sensitivity of the channels to ß2 adrenergic modulation. Our results highlight the importance of these signaling microdomains in maintaining the chronotropic modulation of the heart and also pinpoint the direct impact that aging has on their function.

3.
J Gen Physiol ; 154(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35583815

RESUMEN

Phosphoinositide membrane lipids are ubiquitous low-abundance signaling molecules. They direct many physiological processes that involve ion channels, membrane identification, fusion of membrane vesicles, and vesicular endocytosis. Pools of these lipids are continually broken down and refilled in living cells, and the rates of some of these reactions are strongly accelerated by physiological stimuli. Recent biophysical experiments described here measure and model the kinetics and regulation of these lipid signals in intact cells. Rapid on-line monitoring of phosphoinositide metabolism is made possible by optical tools and electrophysiology. The experiments reviewed here reveal that as for other cellular second messengers, the dynamic turnover and lifetimes of membrane phosphoinositides are measured in seconds, controlling and timing rapid physiological responses, and the signaling is under strong metabolic regulation. The underlying mechanisms of this metabolic regulation remain questions for the future.


Asunto(s)
Endocitosis , Fosfatidilinositoles , Metabolismo de los Lípidos , Fosfatidilinositoles/metabolismo , Transporte de Proteínas , Transducción de Señal
4.
J Gen Physiol ; 154(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35179558

RESUMEN

PtdIns(4,5)P2 is a signaling lipid central to the regulation of multiple cellular functions. It remains unknown how PtdIns(4,5)P2 fulfills various functions in different cell types, such as regulating neuronal excitability, synaptic release, and astrocytic function. Here, we compared the dynamics of PtdIns(4,5)P2 synthesis in hippocampal neurons and astrocytes with the kidney-derived tsA201 cell line. The experimental approach was to (1) measure the abundance and rate of PtdIns(4,5)P2 synthesis and precursors using specific biosensors, (2) measure the levels of PtdIns(4,5)P2 and its precursors using mass spectrometry, and (3) use a mathematical model to compare the metabolism of PtdIns(4,5)P2 in cell types with different proportions of phosphoinositides. The rate of PtdIns(4,5)P2 resynthesis in hippocampal neurons after depletion by cholinergic or glutamatergic stimulation was three times faster than for tsA201 cells. In tsA201 cells, resynthesis of PtdIns(4,5)P2 was dependent on the enzyme PI4K. In contrast, in hippocampal neurons, the resynthesis rate of PtdIns(4,5)P2 was insensitive to the inhibition of PI4K, indicating that it does not require de novo synthesis of the precursor PtdIns(4)P. Measurement of phosphoinositide abundance indicated a larger pool of PtdIns(4)P, suggesting that hippocampal neurons maintain sufficient precursor to restore PtdIns(4,5)P2 levels. Quantitative modeling indicates that the measured differences in PtdIns(4)P pool size and higher activity of PI4K can account for the experimental findings and indicates that high PI4K activity prevents depletion of PtdIns(4)P. We further show that the resynthesis of PtdIns(4,5)P2 is faster in neurons than astrocytes, providing context to the relevance of cell type-specific mechanisms to sustain PtdIns(4,5)P2 levels.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositoles , Hipocampo/metabolismo , Neuronas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/metabolismo
5.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34982154

RESUMEN

Phosphatidylinositol(4,5)-bisphosphate (PtdInsP2) is an important modulator of many cellular processes, and its abundance in the plasma membrane is closely regulated. We examined the hypothesis that members of the Dishevelled scaffolding protein family can bind the lipid kinases phosphatidylinositol 4-kinase (PI4K) and phosphatidylinositol 4-phosphate 5-kinase (PIP5K), facilitating synthesis of PtdInsP2 directly from phosphatidylinositol. We used several assays for PtdInsP2 to examine the cooperative function of phosphoinositide kinases and the Dishevelled protein Dvl3 in the context of two receptor signaling cascades. Simultaneous overexpression of PI4KIIIα (also known as PI4KA) and PIP5KIγ (also known as PIP5K1C) had a synergistic effect on PtdInsP2 synthesis that was recapitulated by overexpression of Dvl3. Increasing the activity of Dvl3 by overexpression increased resting plasma membrane PtdInsP2. Knockdown of Dvl3 reduced resting plasma membrane PtdInsP2 and slowed PtdInsP2 resynthesis following receptor activation. We confirm that Dvl3 promotes coupling of PI4KIIIα and PIP5KIγ and show that this interaction is essential for efficient resynthesis of PtdInsP2 following receptor activation.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa , Fosfatidilinositol 4,5-Difosfato , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Membrana Celular/metabolismo , Proteínas Dishevelled/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)
6.
Geroscience ; 44(1): 1-17, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34292477

RESUMEN

The cardiac pacemaker ignites and coordinates the contraction of the whole heart, uninterruptedly, throughout our entire life. Pacemaker rate is constantly tuned by the autonomous nervous system to maintain body homeostasis. Sympathetic and parasympathetic terminals act over the pacemaker cells as the accelerator and the brake pedals, increasing or reducing the firing rate of pacemaker cells to match physiological demands. Despite the remarkable reliability of this tissue, the pacemaker is not exempt from the detrimental effects of aging. Mammals experience a natural and continuous decrease in the pacemaker rate throughout the entire lifespan. Why the pacemaker rhythm slows with age is poorly understood. Neural control of the pacemaker is remodeled from birth to adulthood, with strong evidence of age-related dysfunction that leads to a downshift of the pacemaker. Such evidence includes remodeling of pacemaker tissue architecture, alterations in the innervation, changes in the sympathetic acceleration and the parasympathetic deceleration, and alterations in the responsiveness of pacemaker cells to adrenergic and cholinergic modulation. In this review, we revisit the main evidence on the neural control of the pacemaker at the tissue and cellular level and the effects of aging on shaping this neural control.


Asunto(s)
Envejecimiento , Nodo Sinoatrial , Animales , Frecuencia Cardíaca/fisiología , Reproducibilidad de los Resultados , Nodo Sinoatrial/fisiología
7.
J Gen Physiol ; 153(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34581724

RESUMEN

A primary goal of molecular physiology is to understand how conformational changes of proteins affect the function of cells, tissues, and organisms. Here, we describe an imaging method for measuring the conformational changes of the voltage sensors of endogenous ion channel proteins within live tissue, without genetic modification. We synthesized GxTX-594, a variant of the peptidyl tarantula toxin guangxitoxin-1E, conjugated to a fluorophore optimal for two-photon excitation imaging through light-scattering tissue. We term this tool EVAP (Endogenous Voltage-sensor Activity Probe). GxTX-594 targets the voltage sensors of Kv2 proteins, which form potassium channels and plasma membrane-endoplasmic reticulum junctions. GxTX-594 dynamically labels Kv2 proteins on cell surfaces in response to voltage stimulation. To interpret dynamic changes in fluorescence intensity, we developed a statistical thermodynamic model that relates the conformational changes of Kv2 voltage sensors to degree of labeling. We used two-photon excitation imaging of rat brain slices to image Kv2 proteins in neurons. We found puncta of GxTX-594 on hippocampal CA1 neurons that responded to voltage stimulation and retain a voltage response roughly similar to heterologously expressed Kv2.1 protein. Our findings show that EVAP imaging methods enable the identification of conformational changes of endogenous Kv2 voltage sensors in tissue.


Asunto(s)
Canales de Potasio Shab , Venenos de Araña , Animales , Proteínas Portadoras , Hipocampo/metabolismo , Neuronas/metabolismo , Ratas , Canales de Potasio Shab/metabolismo
8.
EMBO J ; 40(13): e105990, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34019311

RESUMEN

Cholesterol and phosphoinositides (PI) are two critically important lipids that are found in cellular membranes and dysregulated in many disorders. Therefore, uncovering molecular pathways connecting these essential lipids may offer new therapeutic insights. We report that loss of function of lysosomal Niemann-Pick Type C1 (NPC1) cholesterol transporter, which leads to neurodegenerative NPC disease, initiates a signaling cascade that alters the cholesterol/phosphatidylinositol 4-phosphate (PtdIns4P) countertransport cycle between Golgi-endoplasmic reticulum (ER), as well as lysosome-ER membrane contact sites (MCS). Central to these disruptions is increased recruitment of phosphatidylinositol 4-kinases-PI4KIIα and PI4KIIIß-which boosts PtdIns4P metabolism at Golgi and lysosomal membranes. Aberrantly increased PtdIns4P levels elevate constitutive anterograde secretion from the Golgi complex, and mTORC1 recruitment to lysosomes. NPC1 disease mutations phenocopy the transporter loss of function and can be rescued by inhibition or knockdown of either key phosphoinositide enzymes or their recruiting partners. In summary, we show that the lysosomal NPC1 cholesterol transporter tunes the molecular content of Golgi and lysosome MCS to regulate intracellular trafficking and growth signaling in health and disease.


Asunto(s)
Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Lisosomas/metabolismo , Proteína Niemann-Pick C1/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Transporte Biológico/fisiología , Células CHO , Línea Celular , Colesterol/metabolismo , Cricetulus , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Membranas Intracelulares/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Transducción de Señal/fisiología
9.
Commun Biol ; 3(1): 665, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33184446

RESUMEN

N-methyl-D-aspartate receptors (NMDAR) are glutamate-gated calcium channels named after their artificial agonist. NMDAR are implicated in cell proliferation under normal and pathophysiological conditions. However, the role of NMDAR during mitosis has not yet been explored in individual cells. We found that neurotransmitter-evoked calcium entry via endogenous NMDAR in cortical astrocytes was transient during mitosis. The same occurred in HEK293 cells transfected with the NR1/NR2A subunits of NMDAR. This transient calcium entry during mitosis was due to phosphorylation of the first intracellular loop of NMDAR (S584 of NR1 and S580 of NR2A) by cyclin B/CDK1. Expression of phosphomimetic mutants resulted in transient calcium influx and enhanced NMDAR inactivation independent of the cell cycle phase. Phosphomimetic mutants increased entry of calcium in interphase and generated several alterations during mitosis: increased mitotic index, increased number of cells with lagging chromosomes and fragmentation of pericentriolar material. In summary, by controlling cytosolic calcium, NMDAR modulate mitosis and probably cell differentiation/proliferation. Our results suggest that phosphorylation of NMDAR by cyclin B/CDK1 during mitosis is required to preserve mitotic fidelity. Altering the modulation of the NMDAR by cyclin B/CDK1 may conduct to aneuploidy and cancer.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Calcio/metabolismo , Ciclina B/metabolismo , Mitosis/fisiología , Receptores de N-Metil-D-Aspartato , Animales , Astrocitos/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Masculino , Fosforilación , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo
10.
J Cell Sci ; 133(2)2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31831523

RESUMEN

Phosphoinositide lipids regulate many cellular processes and are synthesized by lipid kinases. Type I phosphatidylinositol phosphate 5-kinases (PIP5KIs) generate phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. Several phosphoinositide-sensitive readouts revealed the nonequivalence of overexpressing PIP5KIß, PIP5KIγ or Ras association domain family 4 (RASSF4), believed to activate PIP5KIs. Mass spectrometry showed that each of these three proteins increased total cellular phosphatidylinositol bisphosphates (PtdInsP2) and trisphosphates (PtdInsP3) at the expense of phosphatidylinositol phosphate (PtdInsP) without changing lipid acyl chains. Analysis of KCNQ2/3 channels and PH domains confirmed an increase in plasma membrane PtdIns(4,5)P2 in response to PIP5KIß or PIP5KIγ overexpression, but RASSF4 required coexpression with PIP5KIγ to increase plasma membrane PtdIns(4,5)P2 Effects on the several steps of store-operated calcium entry (SOCE) were not explained by plasma membrane phosphoinositide increases alone. PIP5KIß and RASSF4 increased STIM1 proximity to the plasma membrane, accelerated STIM1 mobilization and speeded onset of SOCE; however, PIP5KIγ reduced STIM1 recruitment but did not change induced Ca2+ entry. These differences imply actions through different segregated pools of phosphoinositides and specific protein-protein interactions and targeting.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Humanos , Transfección
11.
Bioorg Med Chem Lett ; 29(23): 126681, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31668424

RESUMEN

A set of novel Kv7.2/7.3 (KCNQ2/3) channel blockers was synthesized to address several liabilities of the known compounds XE991 (metabolic instability and CYP inhibition) and the clinical compound DMP 543 (acid instability, insolubility, and lipophilicity). Using the anthrone scaffold of the prior channel blockers, alternative heteroarylmethyl substituents were installed via enolate alkylation reactions. Incorporation of a pyridazine and a fluorinated pyridine gave an analog (compound 18, JDP-107) with a promising combination of potency (IC50 = 0.16 µM in a Kv7.2 thallium flux assay), efficacy in a Kv7.2/7.3 patch clamp assay, and drug-like properties.


Asunto(s)
Antracenos/farmacología , Canal de Potasio KCNQ2/antagonistas & inhibidores , Canal de Potasio KCNQ3/antagonistas & inhibidores , Trastornos Mentales/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Bloqueadores de los Canales de Potasio/farmacología , Antracenos/síntesis química , Antracenos/química , Relación Dosis-Respuesta a Droga , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Estructura Molecular , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Relación Estructura-Actividad
12.
J Cell Biol ; 218(12): 4141-4156, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31601621

RESUMEN

Niemann-Pick type C1 (NPC1) protein is essential for the transport of externally derived cholesterol from lysosomes to other organelles. Deficiency of NPC1 underlies the progressive NPC1 neurodegenerative disorder. Currently, there are no curative therapies for this fatal disease. Given the Ca2+ hypothesis of neurodegeneration, which posits that altered Ca2+ dynamics contribute to neuropathology, we tested if disease mutations in NPC1 alter Ca2+ signaling and neuronal plasticity. We determine that NPC1 inhibition or disease mutations potentiate store-operated Ca2+ entry (SOCE) due to a presenilin 1 (PSEN1)-dependent reduction in ER Ca2+ levels alongside elevated expression of the molecular SOCE components ORAI1 and STIM1. Associated with this dysfunctional Ca2+ signaling is destabilization of neuronal dendritic spines. Knockdown of PSEN1 or inhibition of the SREBP pathway restores Ca2+ homeostasis, corrects differential protein expression, reduces cholesterol accumulation, and rescues spine density. These findings highlight lysosomes as a crucial signaling platform responsible for tuning ER Ca2+ signaling, SOCE, and synaptic architecture in health and disease.


Asunto(s)
Señalización del Calcio , Retículo Endoplásmico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Plasticidad Neuronal , Animales , Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Espinas Dendríticas/metabolismo , Fibroblastos/metabolismo , Hipocampo/citología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas de Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Proteína Niemann-Pick C1 , Proteína ORAI1/metabolismo , Presenilina-1/metabolismo , Transducción de Señal , Molécula de Interacción Estromal 1/metabolismo , Sinapsis/metabolismo
13.
Cell Rep ; 27(9): 2636-2648.e4, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31141688

RESUMEN

There is increasing evidence that the lysosome is involved in the pathogenesis of a variety of neurodegenerative disorders. Thus, mechanisms that link lysosome dysfunction to the disruption of neuronal homeostasis offer opportunities to understand the molecular underpinnings of neurodegeneration and potentially identify specific therapeutic targets. Here, using a monogenic neurodegenerative disorder, NPC1 disease, we demonstrate that reduced cholesterol efflux from lysosomes aberrantly modifies neuronal firing patterns. The molecular mechanism linking alterations in lysosomal cholesterol egress to intrinsic tuning of neuronal excitability is a transcriptionally mediated upregulation of the ABCA1 transporter, whose PtdIns(4,5)P2-floppase activity decreases plasma membrane PtdIns(4,5)P2. The consequence of reduced PtdIns(4,5)P2 is a parallel decrease in a key regulator of neuronal excitability, the voltage-gated KCNQ2/3 potassium channel, which leads to hyperexcitability in NPC1 disease neurons. Thus, cholesterol efflux from lysosomes regulates PtdIns(4,5)P2 to shape the electrical and functional identity of the plasma membrane of neurons in health and disease.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Lisosomas/metabolismo , Neuronas/fisiología , Enfermedad de Niemann-Pick Tipo C/fisiopatología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Transporte Biológico , Femenino , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/metabolismo
14.
J Vis Exp ; (129)2017 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-29155750

RESUMEN

Advances in fluorescent microscopy and cell biology are intimately correlated, with the enhanced ability to visualize cellular events often leading to dramatic leaps in our understanding of how cells function. The development and availability of super-resolution microscopy has considerably extended the limits of optical resolution from ~250-20 nm. Biologists are no longer limited to describing molecular interactions in terms of colocalization within a diffraction limited area, rather it is now possible to visualize the dynamic interactions of individual molecules. Here, we outline a protocol for the visualization and quantification of cellular proteins by ground-state depletion microscopy for fixed cell imaging. We provide examples from two different membrane proteins, an element of the endoplasmic reticulum translocon, sec61ß, and a plasma membrane-localized voltage-gated L-type Ca2+ channel (CaV1.2). Discussed are the specific microscope parameters, fixation methods, photo-switching buffer formulation, and pitfalls and challenges of image processing.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Animales , Células COS , Chlorocebus aethiops , Ratones , Transfección
15.
Elife ; 62017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28665272

RESUMEN

CaV-channel dependent activation of BK channels is critical for feedback control of both calcium influx and cell excitability. Here we addressed the functional and spatial interaction between BK and CaV1.3 channels, unique CaV1 channels that activate at low voltages. We found that when BK and CaV1.3 channels were co-expressed in the same cell, BK channels started activating near -50 mV, ~30 mV more negative than for activation of co-expressed BK and high-voltage activated CaV2.2 channels. In addition, single-molecule localization microscopy revealed striking clusters of CaV1.3 channels surrounding clusters of BK channels and forming a multi-channel complex both in a heterologous system and in rat hippocampal and sympathetic neurons. We propose that this spatial arrangement allows tight tracking between local BK channel activation and the gating of CaV1.3 channels at quite negative membrane potentials, facilitating the regulation of neuronal excitability at voltages close to the threshold to fire action potentials.


Asunto(s)
Canales de Calcio/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Neuronas/química , Neuronas/fisiología , Animales , Células Cultivadas , Técnicas de Placa-Clamp , Ratas
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(5): 513-522, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28189644

RESUMEN

Phosphoinositides are rapidly turning-over phospholipids that play key roles in intracellular signaling and modulation of membrane effectors. Through technical refinements we have improved sensitivity in the analysis of the phosphoinositide PI, PIP, and PIP2 pools from living cells using mass spectrometry. This has permitted further resolution in phosphoinositide lipidomics from cell cultures and small samples of tissue. The technique includes butanol extraction, derivatization of the lipids, post-column infusion of sodium to stabilize formation of sodiated adducts, and electrospray ionization mass spectrometry in multiple reaction monitoring mode, achieving a detection limit of 20pg. We describe the spectrum of fatty-acyl chains in the cellular phosphoinositides. Consistent with previous work in other mammalian primary cells, the 38:4 fatty-acyl chains dominate in the phosphoinositides of the pineal gland and of superior cervical ganglia, and many additional fatty acid combinations are found at low abundance. However, Chinese hamster ovary cells and human embryonic kidney cells (tsA201) in culture have different fatty-acyl chain profiles that change with growth state. Their 38:4 lipids lose their dominance as cultures approach confluence. The method has good time resolution and follows well the depletion in <20s of both PIP2 and PIP that results from strong activation of Gq-coupled receptors. The receptor-activated phospholipase C exhibits no substrate selectivity among the various fatty-acyl chain combinations.


Asunto(s)
Ácidos Grasos/aislamiento & purificación , Fosfatidilinositoles/aislamiento & purificación , Fosfolípidos/aislamiento & purificación , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Células CHO , Cricetinae , Cricetulus , Ácidos Grasos/química , Humanos , Fosfatidilinositoles/química , Fosfolípidos/química , Transducción de Señal
17.
J Cell Biol ; 213(1): 33-48, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-27044890

RESUMEN

Endoplasmic reticulum-plasma membrane (ER-PM) contact sites play an integral role in cellular processes such as excitation-contraction coupling and store-operated calcium entry (SOCE). Another ER-PM assembly is one tethered by the extended synaptotagmins (E-Syt). We have discovered that at steady state, E-Syt2 positions the ER and Sac1, an integral ER membrane lipid phosphatase, in discrete ER-PM junctions. Here, Sac1 participates in phosphoinositide homeostasis by limiting PM phosphatidylinositol 4-phosphate (PI(4)P), the precursor of PI(4,5)P2 Activation of G protein-coupled receptors that deplete PM PI(4,5)P2disrupts E-Syt2-mediated ER-PM junctions, reducing Sac1's access to the PM and permitting PM PI(4)P and PI(4,5)P2to recover. Conversely, depletion of ER luminal calcium and subsequent activation of SOCE increases the amount of Sac1 in contact with the PM, depleting PM PI(4)P. Thus, the dynamic presence of Sac1 at ER-PM contact sites allows it to act as a cellular sensor and controller of PM phosphoinositides, thereby influencing many PM processes.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ratas , Ratas Sprague-Dawley , Sinaptotagminas/metabolismo
18.
J Neurosci ; 36(4): 1386-400, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26818524

RESUMEN

In neurons, loss of plasma membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] leads to a decrease in exocytosis and changes in electrical excitability. Restoration of PI(4,5)P2 levels after phospholipase C activation is therefore essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We measured dynamic changes of PI(4,5)P2, phosphatidylinositol 4-phosphate, diacylglycerol, inositol 1,4,5-trisphosphate, and Ca(2+) upon muscarinic stimulation in sympathetic neurons from adult male Sprague-Dawley rats with electrophysiological and optical approaches. We used this kinetic information to develop a quantitative description of neuronal phosphoinositide metabolism. The measurements and analysis show and explain faster synthesis of PI(4,5)P2 in sympathetic neurons than in electrically nonexcitable tsA201 cells. They can be used to understand dynamic effects of receptor-mediated phospholipase C activation on excitability and other PI(4,5)P2-dependent processes in neurons. SIGNIFICANCE STATEMENT: Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a minor phospholipid in the cytoplasmic leaflet of the plasma membrane. Depletion of PI(4,5)P2 via phospholipase C-mediated hydrolysis leads to a decrease in exocytosis and alters electrical excitability in neurons. Restoration of PI(4,5)P2 is essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We studied the dynamics of phosphoinositide metabolism in sympathetic neurons upon muscarinic stimulation and used the kinetic information to develop a quantitative description of neuronal phosphoinositide metabolism. The measurements and analysis show a several-fold faster synthesis of PI(4,5)P2 in sympathetic neurons than in an electrically nonexcitable cell line, and provide a framework for future studies of PI(4,5)P2-dependent processes in neurons.


Asunto(s)
Neuronas/fisiología , Dinámicas no Lineales , Fosfatidilinositoles/metabolismo , Transducción de Señal/fisiología , Ganglio Cervical Superior/citología , Animales , Calcio/metabolismo , Células Cultivadas , Humanos , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Masculino , Potenciales de la Membrana/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/genética , Fosfolipasa C delta/genética , Fosfolipasa C delta/metabolismo , Proteínas/genética , Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Factores de Tiempo
19.
Biochim Biophys Acta ; 1851(6): 844-56, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25241941

RESUMEN

Phosphoinositides serve as signature motifs for different cellular membranes and often are required for the function of membrane proteins. Here, we summarize clear evidence supporting the concept that many ion channels are regulated by membrane phosphoinositides. We describe tools used to test their dependence on phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, and consider mechanisms and biological meanings of phosphoinositide regulation of ion channels. This lipid regulation can underlie changes of channel activity and electrical excitability in response to receptors. Since different intracellular membranes have different lipid compositions, the activity of ion channels still in transit towards their final destination membrane may be suppressed until they reach an optimal lipid environment. This article is part of a Special Issue entitled Phosphoinositides.


Asunto(s)
Canales de Calcio/metabolismo , Canales de Cloruro/metabolismo , Canales Epiteliales de Sodio/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Calcio/genética , Membrana Celular/química , Membrana Celular/metabolismo , Canales de Cloruro/genética , Canales Epiteliales de Sodio/genética , Regulación de la Expresión Génica , Humanos , Transporte Iónico , Canales de Potasio/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Canales de Potencial de Receptor Transitorio/genética , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
20.
J Neurosci ; 34(36): 11959-71, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25186743

RESUMEN

Levels of nerve growth factor (NGF) are elevated in inflamed tissues. In sensory neurons, increases in NGF augment neuronal sensitivity (sensitization) to noxious stimuli. Here, we hypothesized that NGF also sensitizes sympathetic neurons to proinflammatory stimuli. We cultured superior cervical ganglion (SCG) neurons from adult male Sprague Dawley rats with or without added NGF and compared their responsiveness to bradykinin, a proinflammatory peptide. The NGF-cultured neurons exhibited significant depolarization, bursts of action potentials, and Ca(2+) elevations after bradykinin application, whereas neurons cultured without NGF showed only slight changes in membrane potential and cytoplasmic Ca(2+) levels. The NGF effect, which requires trkA receptors, takes hours to develop and days to reverse. We addressed the ionic mechanisms underlying this sensitization. NGF did not alter bradykinin-induced M-current inhibition or phosphatidylinositol 4,5-bisphosphate hydrolysis. Maxi-K channel-mediated current evoked by depolarizations was reduced by 50% by culturing neurons in NGF. Application of iberiotoxin or paxilline, blockers of Maxi-K channels, mimicked NGF treatment and sensitized neurons to bradykinin application. A calcium channel blocker also mimicked NGF treatment. We found that NGF reduces Maxi-K channel opening by decreasing the activity of nifedipine-sensitive calcium channels. In conclusion, culture in NGF reduces the activity of L-type calcium channels, and secondarily, the calcium-sensitive activity of Maxi-K channels, rendering sympathetic neurons electrically hyper-responsive to bradykinin.


Asunto(s)
Potenciales de Acción , Bradiquinina/farmacología , Mediadores de Inflamación/farmacología , Factor de Crecimiento Nervioso/farmacología , Neuronas/metabolismo , Ganglio Cervical Superior/efectos de los fármacos , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Señalización del Calcio , Células Cultivadas , Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Masculino , Neuronas/efectos de los fármacos , Neuronas/fisiología , Nifedipino/farmacología , Paxillin/farmacología , Péptidos/farmacología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Receptor trkA/metabolismo , Ganglio Cervical Superior/citología , Ganglio Cervical Superior/metabolismo , Ganglio Cervical Superior/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...