Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Alzheimers Dis ; 92(3): 1077-1091, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36847005

RESUMEN

BACKGROUND: Evidence for the universal presence of IgG autoantibodies in blood and their potential utility for the diagnosis of Alzheimer's disease (AD) and other neurodegenerative diseases has been extensively demonstrated by our laboratory. The fact that AD-related neuropathological changes in the brain can begin more than a decade before tell-tale symptoms emerge has made it difficult to develop diagnostic tests useful for detecting the earliest stages of AD pathogenesis. OBJECTIVE: To determine the utility of a panel of autoantibodies for detecting the presence of AD-related pathology along the early AD continuum, including at pre-symptomatic [an average of 4 years before the transition to mild cognitive impairment (MCI)/AD)], prodromal AD (MCI), and mild-moderate AD stages. METHODS: A total of 328 serum samples from multiple cohorts, including ADNI subjects with confirmed pre-symptomatic, prodromal, and mild-moderate AD, were screened using Luminex xMAP® technology to predict the probability of the presence of AD-related pathology. A panel of eight autoantibodies with age as a covariate was evaluated using randomForest and receiver operating characteristic (ROC) curves. RESULTS: Autoantibody biomarkers alone predicted the probability of the presence of AD-related pathology with 81.0% accuracy and an area under the curve (AUC) of 0.84 (95% CI = 0.78-0.91). Inclusion of age as a parameter to the model improved the AUC (0.96; 95% CI = 0.93-0.99) and overall accuracy (93.0%). CONCLUSION: Blood-based autoantibodies can be used as an accurate, non-invasive, inexpensive, and widely accessible diagnostic screener for detecting AD-related pathology at pre-symptomatic and prodromal AD stages that could aid clinicians in diagnosing AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/patología , Biomarcadores , Curva ROC , Autoanticuerpos
2.
PLoS One ; 15(8): e0238264, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32822440

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0233502.].

3.
PLoS One ; 15(5): e0233502, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32433667

RESUMEN

The environment within the Endoplasmic Reticulum (ER) influences Insulin biogenesis. In particular, ER stress may contribute to the development of Type 2 Diabetes (T2D) and Cystic Fibrosis Related Diabetes (CFRD), where evidence of impaired Insulin processing, including elevated secreted Proinsulin/Insulin ratios, are observed. Our group has established the role of a novel ER chaperone ERp29 (ER protein of 29 kDa) in the biogenesis of the Epithelial Sodium Channel, ENaC. The biogenesis of Insulin and ENaC share may key features, including their potential association with COP II machinery, their cleavage into a more active form in the Golgi or later compartments, and their ability to bypass such cleavage and remain in a less active form. Given these similarities we hypothesized that ERp29 is a critical factor in promoting the efficient conversion of Proinsulin to Insulin. Here, we confirmed that Proinsulin associates with the COP II vesicle cargo recognition component, Sec24D. When Sec24D expression was decreased, we observed a corresponding decrease in whole cell Proinsulin levels. In addition, we found that Sec24D associates with ERp29 in co-precipitation experiments and that ERp29 associates with Proinsulin in co-precipitation experiments. When ERp29 was overexpressed, a corresponding increase in whole cell Proinsulin levels was observed, while depletion of ERp29 decreased whole cell Proinsulin levels. Together, these data suggest a potential role for ERp29 in regulating Insulin biosynthesis, perhaps in promoting the exit of Proinsulin from the ER via Sec24D/COPII vesicles.


Asunto(s)
Proteínas de Choque Térmico/fisiología , Insulina/biosíntesis , Proteínas de Transporte Vesicular/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Fibrosis Quística/complicaciones , Diabetes Mellitus Tipo 2 , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Humanos , Proinsulina/metabolismo , Transporte de Proteínas
4.
J Biol Chem ; 294(48): 18324-18336, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31653700

RESUMEN

Endoplasmic reticulum protein of 29 kDa (ERp29) is a thioredoxin-homologous endoplasmic reticulum (ER) protein that regulates the biogenesis of cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC). ERp29 may promote ENaC cleavage and increased open probability by directing ENaC to the Golgi via coat complex II (COP II) during biogenesis. We hypothesized that ERp29's C-terminal KEEL ER retention motif, a KDEL variant that is associated with less robust ER retention, strongly influences its regulation of ENaC biogenesis. As predicted by our previous work, depletion of Sec24D, the cargo recognition component of COP II that we previously demonstrated to interact with ENaC, decreases ENaC functional expression without altering ß-ENaC expression at the apical surface. We then tested the influence of KDEL ERp29, which should be more readily retrieved from the proximal Golgi by the KDEL receptor (KDEL-R), and a KEEL-deleted mutant (ΔKEEL ERp29), which should not interact with the KDEL-R. ENaC functional expression was decreased by ΔKEEL ERp29 overexpression, whereas KDEL ERp29 overexpression did not significantly alter ENaC functional expression. Again, ß-ENaC expression at the apical surface was unaltered by either of these manipulations. Finally, we tested whether the KDEL-R itself has a role in ENaC forward trafficking and found that KDEL-R depletion decreases ENaC functional expression, again without altering ß-ENaC expression at the apical surface. These results support the hypothesis that the KDEL-R plays a role in the biogenesis of ENaC and in its exit from the ER through its association with COP II. The cleavage of the extracellular loops of the epithelial sodium channel (ENaC) α and γ subunits increases the channel's open probability and function. During ENaC biogenesis, such cleavage is regulated by the novel 29-kDa chaperone of the ER, ERp29. Our data here are consistent with the hypothesis that ERp29 must interact with the KDEL receptor to exert its regulation of ENaC biogenesis. The classically described role of the KDEL receptor is to retrieve ER-retained species from the proximal Golgi and return them to the ER via coat complex I machinery. In contrast, our data suggest a novel and important role for the KDEL receptor in the biogenesis and forward trafficking of ENaC.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Canales Epiteliales de Sodio/metabolismo , Proteínas de Choque Térmico/metabolismo , Receptores de Péptidos/metabolismo , Animales , Células Cultivadas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Perros , Retículo Endoplásmico/metabolismo , Canales Epiteliales de Sodio/genética , Aparato de Golgi/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Células de Riñón Canino Madin Darby , Ratones , Transporte de Proteínas , Interferencia de ARN , Receptores de Péptidos/genética
5.
Data Brief ; 8: 78-81, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27284566

RESUMEN

In this data article we report on the purity and post translation modification of bacterially expressed and purified recombinant hippocalcin (HPCA): a member of the neuronal calcium sensor protein family, whose functions are regulated by calcium. MALDI-TOF in source decay (ISD) analysis was used to identify both the myristoylated or non-myristoylated forms of the protein. MALDI-TOF ISD data on the identity of the protein, amino acid sequence and myristoylation efficiency are provided. This data relates to the article "Single-Column Purification of the Tag-free, Recombinant Form of the Neuronal Calcium Sensor Protein, Hippocalcin Expressed in Eschericia coli" [1].

6.
Data Brief ; 7: 1606-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27222862

RESUMEN

In this data article we show the specificity of the Ca(2+)-induced mobility shift in three proteins that belong to the neuronal calcium sensor (NCS) protein family: Hippocalcin, GCAP1 and GCAP2. These proteins did not display a shift in mobility in native gels when incubated with divalent cations other than Ca(2+) - such as Mg(2+), Ba(2+), and Sr(2+), even at 10× concentrations. The data is similar to that obtained with another NCS protein, neurocalcin delta (Viviano et al., 2016, "Electrophoretic Mobility Shift in Native Gels Indicates Calcium-dependent Structural Changes of Neuronal Calcium Sensor Proteins", [1]).

7.
Data Brief ; 7: 630-3, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27054169

RESUMEN

This data article presents the differences observed between the myristoylated and non-myristoylated forms of the neuronal calcium sensor protein, neurocalcin delta (NCALD). Analysis of the myristoylated and non-myristoylated versions of the protein by mass spectrometry provided difference in mass values consistent with addition of myristoyl group. In the presence of calcium, mobility retardation was observed upon electrophoresis of the protein in native gels. The retardation was dose-dependent and was exhibited by both the myristoylated and non-myristoylated forms of the protein.

8.
Protein Expr Purif ; 123: 35-41, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27001424

RESUMEN

Hippocalcin is a 193 aa protein that is a member of the neuronal calcium sensor protein family, whose functions are regulated by calcium. Mice that lack the function of this protein are compromised in the long term potentiation aspect of memory generation. Recently, mutations in the gene have been linked with dystonia in human. The protein has no intrinsic enzyme activity but is known to bind to variety of target proteins. Very little information is available on how the protein executes its critical role in signaling pathways, except that it is regulated by binding of calcium. Further delineation of its function requires large amounts of pure protein. In this report, we present a single-step purification procedure that yields high quantities of the bacterially expressed, recombinant protein. The procedure may be adapted to purify the protein from inclusion bodies or cytosol in its myristoylated or non-myristoylated forms. MALDI-MS (in source decay) analyses demonstrates that the myristoylation occurs at the glycine residue. The protein is also biologically active as measured through tryptophan fluorescence, mobility shift and guanylate cyclase activity assays. Thus, further analyses of hippocalcin, both structural and functional, need no longer be limited by protein availability.


Asunto(s)
Escherichia coli/genética , Hipocalcina/genética , Hipocalcina/aislamiento & purificación , Animales , Cromatografía Liquida , Expresión Génica , Vectores Genéticos/genética , Hipocalcina/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
Data Brief ; 6: 820-2, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26937454

RESUMEN

In this article we present data on the concentration of calcium as determined by Inductively Coupled Plasma (ICP) measurements. Calcium was estimated in the reagents used for native gel electrophoresis of Neuronal Calcium Sensor (NCS) proteins. NCS proteins exhibit calcium-dependent mobility shift in native gels. The sensitivity of this shift to calcium necessitated a precise determination of calcium concentrations in all reagents used. We determined the calcium concentrations in different components used along with the samples in the native gel experiments. These were: 20 mM Tris pH 7.5, loading dye and running buffer, with distilled water as reference. Calcium determinations were through ICP measurements. It was found that the running buffer contained calcium (244 nM) over the blank.

10.
Anal Biochem ; 494: 93-100, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26617128

RESUMEN

In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature--the calcium-myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins.


Asunto(s)
Calcio/metabolismo , Electroforesis en Gel de Poliacrilamida Nativa , Proteínas Sensoras del Calcio Neuronal/metabolismo , Calcio/química , Escherichia coli/metabolismo , Proteínas Sensoras del Calcio Neuronal/química , Proteínas Sensoras del Calcio Neuronal/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
11.
Curr Biol ; 21(16): 1416-20, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21835620

RESUMEN

Self-fertile hermaphrodites have evolved independently several times in the genus Caenorhabditis [1, 2]. These XX hermaphrodites make smaller sperm than males [3, 4], which they use to fertilize their own oocytes. Because larger sperm outcompete smaller sperm in nematodes [3-5], it had been assumed that this dimorphism evolved in response to sperm competition. However, we show that it was instead caused by a developmental bias. When we transformed females of the species Caenorhabditis remanei into hermaphrodites [6], their sperm were significantly smaller than those of males. Because this species never makes hermaphrodites in the wild, this dimorphism cannot be due to selection. Instead, analyses of the related nematode Caenorhabditis elegans suggest that this dimorphism might reflect the development of sperm within the distinct physiological environment of the hermaphrodite gonad. These results reveal a new mechanism for some types of developmental bias-the effects of a novel physical location alter the development of ectopic cells in predictable ways.


Asunto(s)
Caenorhabditis/citología , Caenorhabditis/crecimiento & desarrollo , Trastornos del Desarrollo Sexual , Caracteres Sexuales , Espermatozoides/ultraestructura , Animales , Evolución Biológica , Caenorhabditis/clasificación , Femenino , Larva/anatomía & histología , Larva/fisiología , Masculino , Filogenia , Interferencia de ARN , Procesos de Determinación del Sexo , Espermatozoides/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...