Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Morphol ; 280(12): 1808-1820, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31621947

RESUMEN

Dicynodont therapsids were a major component of the Permo-Triassic terrestrial ecosystems across Pangea and have been regarded as specialized herbivores. In South America, the group was represented by several taxa of the clade Kannemeyeriiformes spanning from the Middle to the Late Triassic. In order to evaluate if cranial differences among taxa are potentially related to differences in feeding function, we performed a geometric morphometric analysis on 28 South American dicynodont crania. We digitized 19 cranial landmarks and conducted generalized Procrustes analysis, principal component analysis (PCA), principal component analysis between groups (bg-PCA), and a branch weighted squared-change parsimony approach. Phylogenetic inertia was not a significant driver of cranial shape evolution in the group, whereas PCA and bg-PCA support that major morphological shape differences are concentrated in the preorbital region (relative length of the snout and width of the caniniform process), in the position of quadrate condyle in relation to the caniniform process, and in the increase in the intertemporal surface area. In this context, tusked Dinodontosaurus, "Kannemeyeria," and Vinceria have relatively smaller adductor attachment areas and input moment arm than younger taxa lacking tusks, such as Ischigualastia, Stahleckeria, and Jachaleria. Differences in cranial morphology in later dicynodonts reflect modifications in feeding mechanics, probably due to changes in food resources (vegetation) in their habitats toward the end of the Triassic.


Asunto(s)
Evolución Biológica , Fósiles/anatomía & histología , Reptiles/anatomía & histología , Cráneo/anatomía & histología , Animales , Conducta Alimentaria , Herbivoria , Mamíferos/anatomía & histología , Mamíferos/genética , Mamíferos/fisiología , Paleontología , Filogenia , Reptiles/genética , Reptiles/fisiología , América del Sur
2.
Curr Biol ; 26(4): R155-6, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26906483

RESUMEN

Among the fossils of hitherto unknown mammals that Darwin collected in South America between 1832 and 1833 during the Beagle expedition were examples of the large, heavily armored herbivores later known as glyptodonts. Ever since, glyptodonts have fascinated evolutionary biologists because of their remarkable skeletal adaptations and seemingly isolated phylogenetic position even within their natural group, the cingulate xenarthrans (armadillos and their allies). In possessing a carapace comprised of fused osteoderms, the glyptodonts were clearly related to other cingulates, but their precise phylogenetic position as suggested by morphology remains unresolved. To provide a molecular perspective on this issue, we designed sequence-capture baits using in silico reconstructed ancestral sequences and successfully assembled the complete mitochondrial genome of Doedicurus sp., one of the largest glyptodonts. Our phylogenetic reconstructions establish that glyptodonts are in fact deeply nested within the armadillo crown-group, representing a distinct subfamily (Glyptodontinae) within family Chlamyphoridae. Molecular dating suggests that glyptodonts diverged no earlier than around 35 million years ago, in good agreement with their fossil record. Our results highlight the derived nature of the glyptodont morphotype, one aspect of which is a spectacular increase in body size until their extinction at the end of the last ice age.


Asunto(s)
Evolución Biológica , Fósiles , Genoma Mitocondrial , Mamíferos/clasificación , Mamíferos/genética , Filogenia , Animales , Extinción Biológica , Fósiles/anatomía & histología , Mamíferos/anatomía & histología , Datos de Secuencia Molecular
3.
Anat Rec (Hoboken) ; 298(5): 842-64, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25644288

RESUMEN

This article presents a morphofunctional analysis of the hind limb of Santacrucian (Early Miocene) sloths from southernmost Patagonia (Argentina). These fossil sloths were mid sized to large animals, ranging from 40 to 120 kg, and their postcranial skeleton was markedly different in shape compared with that of extant tree sloths, which vary from 2 to 10 kg. The functional anatomy of the hind limb of Santacrucian sloths was compared with that of living xenarthrans (tree sloths, anteaters, and armadillos), which involved reconstruction of the hind limb musculature and comparative and qualitative morphofunctional analyses, and hypotheses on the biological role of the hind limb in terms of preferences in substrate, posture, and strategies of locomotion were formulated. The hind limb of Santacrucian sloths bears strong resemblances to that of living South American anteaters in stoutness of skeletal elements, form of the characteristics related to muscular and ligamentous attachments, and conservative, pentadactylous strong-clawed pes. The musculature was very well developed, allowing powerful forces, principally in entire limb adduction, crus flexion and extension, pes extension, and toe prehension. These functional features, together with those of the forelimb, are congruent with climbing behavior, and support the hypothesis that Santacrucian sloths were good but slow climbing mammals. However, their climbing strategies were limited, owing principally to their comparatively large body size, and they relied to a large extent on their powerful musculature and curved manual and pedal unguals for both moving and standing on the arboreal supports.


Asunto(s)
Fósiles , Miembro Posterior/anatomía & histología , Músculo Esquelético/anatomía & histología , Perezosos/anatomía & histología , Animales , Argentina , Evolución Biológica , Miembro Posterior/fisiología , Locomoción , Músculo Esquelético/fisiología , Perezosos/fisiología
4.
J Hum Evol ; 74: 67-81, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25081638

RESUMEN

A juvenile cranium of Homunculus patagonicus Ameghino, 1891a from the late Early Miocene of Santa Cruz Province (Argentina) provides the first evidence of developing cranial anatomy for any fossil platyrrhine. The specimen preserves the rostral part of the cranium with deciduous and permanent alveoli and teeth. The dental eruption sequence in the new specimen and a reassessment of eruption patterns in living and fossil platyrrhines suggest that the ancestral platyrrhine pattern of tooth replacement was for the permanent incisors to erupt before M(1), not an accelerated molar eruption (before the incisors) as recently proposed. Two genera and species of Santacrucian monkeys are now generally recognized: H. patagonicus Ameghino, 1891a and Killikaike blakei Tejedor et al., 2006. Taxonomic allocation of Santacrucian monkeys to these species encounters two obstacles: 1) the (now lost) holotype and a recently proposed neotype of H. patagonicus are mandibles from different localities and different geologic members of the Santa Cruz Formation, separated by approximately 0.7 million years, whereas the holotype of K. blakei is a rostral part of a cranium without a mandible; 2) no Santacrucian monkey with associated cranium and mandible has ever been found. Bearing in mind these uncertainties, our examination of the new specimen as well as other cranial specimens of Santacrucian monkeys establishes the overall dental and cranial similarity between the holotype of Killikaike blakei, adult cranial material previously referred to H. patagonicus, and the new juvenile specimen. This leads us to conclude that Killikaike blakei is a junior subjective synonym of H. patagonicus.


Asunto(s)
Evolución Biológica , Fósiles/anatomía & histología , Pitheciidae/anatomía & histología , Animales , Argentina , Diente Molar/anatomía & histología , Pitheciidae/fisiología , Cráneo/anatomía & histología , Erupción Dental , Microtomografía por Rayos X
5.
Anat Rec (Hoboken) ; 296(2): 305-25, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23193102

RESUMEN

Early Miocene sloths are represented by a diversity of forms ranging from 38 to 95 kg, being registered mainly from Santacrucian Age deposits in southern-most shores of Patagonia, Argentina. Their postcranial skeleton differs markedly in shape from those of their closest living relatives (arboreal forms of less than 10 kg), Bradypus and Choloepus. In order to gain insight on functional properties of the Santacrucian sloths forelimb, musculature was reconstructed and a comparative, qualitative morphofunctional analysis was performed, allowing proposing hypotheses about biological role of the limb in substrate preferences, and locomotor strategies. The anatomy of the forelimb of Santacrucian sloths resembles more closely extant anteaters such as Tamandua and Myrmecophaga, due to the robustness of the elements, development of features related to attachment of ligaments and muscles, and conservative, pentadactylous, and strong-clawed manus. The reconstructed forelimb musculature was very well developed and resembles that of extant Pilosa (especially anteaters), although retaining the basic muscular configuration of generalized mammals. This musculature allowed application of powerful forces, especially in adduction of the forelimb, flexion and extension of the antebrachium, and manual prehension. These functional properties are congruent with both climbing and digging activities, and provide support for proposed Santacrucian sloths as good climbing mammals, possibly arboreal or semiarboreal, being also capable diggers. Their climbing strategies were limited, thus these forms relied mainly on great muscular strength and curved claws of the manus to move cautiously on branches.


Asunto(s)
Miembro Anterior/anatomía & histología , Fósiles , Músculos Pectorales/anatomía & histología , Perezosos/anatomía & histología , Adaptación Fisiológica , Anatomía Comparada/métodos , Animales , Argentina , Fenómenos Biomecánicos , Peso Corporal , Carpo Animal/anatomía & histología , Miembro Anterior/fisiología , Húmero/anatomía & histología , Locomoción , Fuerza Muscular , Músculos Pectorales/fisiología , Radio (Anatomía)/anatomía & histología , Perezosos/fisiología , Cúbito/anatomía & histología
6.
J Morphol ; 271(9): 1119-33, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20730924

RESUMEN

The analysis of the hyoid apparatus of fossil xenarthrans provides insight on the form of the tongue and its function in food intake and intraoral processing. The hyoid apparatus of xenarthrans is notable for fusion among its elements. The presence of a V-bone, a complex consisting of fused basihyal and thyrohyal bones, is a consistent and probably synapomorphic feature of xenarthrans. Fusion of other elements is variable in fossil xenarthrans. Most fossil sloths retain independent elements, as in living dasypodids and mammals generally. Among nothrotheriids, the elements are slender and their articular surfaces indicate considerable mobility, and the relatively long and horizontal orientation of the geniohyoid muscle suggests considerable tongue protrusion. Among mylodontines, such as Paramylodon and Glossotherium, the elements indicate relatively mobile articulations, except between the stylo- and epihyals. The relatively posterior placement of the apparatus and the length and alignment of the geniohyoid muscle indicate considerable capacity for tongue protrusion. Scelidotherium, however, had rigidly articulated stylohyal and epihyal, and the apparatus lies farther anteriorly, which together with the elongated, steeply inclined mandibular symphysis, indicates a relatively shorter geniohyoid muscle and thus more limited capacity for tongue protrusion. A similar situation is indicated for Megatherium, casting doubt on the classical reconstruction of this sloth as having a long prehensile tongue. Among cingulates Prozaedyus resembles living dasypodids, indicating considerable tongue protrusion important in food acquisition and intake. More extensive fusion of hyoid elements occurs in the cingulates Glyptodon and Proeutatus, in which the stylohyal and epihyal at least, are fused into a single element termed the sigmohyal. The presence of this element supports recent proposals of a sister-group relationship between glyptodonts and eutatines. The rigidity of the apparatus suggests limited tongue protrusion, but the tongue, in glyptodonts at least, was a powerful structure important for intraoral manipulation of food.


Asunto(s)
Fósiles , Hueso Hioides/anatomía & histología , Hueso Hioides/fisiología , Mamíferos/anatomía & histología , Mamíferos/fisiología , Animales , Lengua/fisiología
7.
J Morphol ; 267(2): 248-63, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16315216

RESUMEN

Sloths are among the most characteristic elements of the Cainozoic of South America and are represented, during the Pleistocene, by approximately nine genera of gigantic ground sloths (Megatheriidae and Mylodontidae). A few contributions have described their masticatory apparatus, but almost no attention has been paid to the reconstruction of the muzzle, an important feature to consider in relation to food intake, and particularly relevant in sloths because of the edentulous nature of the muzzle and its varied morphology. The relationship between dietary habits and shape and width of the muzzle is well documented in living herbivores and has been considered an important feature for the inference of alimentary styles in fossils, providing an interesting methodological tool that deserves to be considered for xenarthrans. The goal of this study was to examine models of food intake by reconstructing the appearance and shape of the muzzle in five species of Pleistocene ground sloths (Megatherium americanum, Glossotherium robustum, Lestodon armatus, Mylodon darwini, and Scelidotherium leptocephalum) using reconstructions of the nasal cartilages and facial muscles involved in food intake. The preservation of the nasal septum, and the scars for muscular attachment in the rostral part of the skulls, allow making a conservative reconstruction of muzzle anatomy in fossil sloths. Wide-muzzled ground sloths (Glossotherium and Lestodon) had a square, nonprehensile upper lip and were mostly bulk-feeders. The lips, coupled with the tongue, were used to pull out grass and herbaceous plants. Narrow-muzzled sloths (Mylodon, Scelidotherium, and Megatherium) had a cone-shaped and prehensile lip and were mixed or selective feeders. The prehensile lip was used to select particular plants or plant parts.


Asunto(s)
Perezosos/anatomía & histología , Animales , Ingestión de Alimentos , Músculos Faciales/anatomía & histología , Boca/anatomía & histología , Músculos/anatomía & histología , Filogenia , Cráneo/anatomía & histología , América del Sur
8.
BMC Evol Biol ; 4: 11, 2004 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-15115541

RESUMEN

BACKGROUND: Comparative genomic data among organisms allow the reconstruction of their phylogenies and evolutionary time scales. Molecular timings have been recently used to suggest that environmental global change have shaped the evolutionary history of diverse terrestrial organisms. Living xenarthrans (armadillos, anteaters and sloths) constitute an ideal model for studying the influence of past environmental changes on species diversification. Indeed, extant xenarthran species are relicts from an evolutionary radiation enhanced by their isolation in South America during the Tertiary era, a period for which major climate variations and tectonic events are relatively well documented. RESULTS: We applied a Bayesian approach to three nuclear genes in order to relax the molecular clock assumption while accounting for differences in evolutionary dynamics among genes and incorporating paleontological uncertainties. We obtained a molecular time scale for the evolution of extant xenarthrans and other placental mammals. Divergence time estimates provide substantial evidence for contemporaneous diversification events among independent xenarthran lineages. This correlated pattern of diversification might possibly relate to major environmental changes that occurred in South America during the Cenozoic. CONCLUSIONS: The observed synchronicity between planetary and biological events suggests that global change played a crucial role in shaping the evolutionary history of extant xenarthrans. Our findings open ways to test this hypothesis further in other South American mammalian endemics like hystricognath rodents, platyrrhine primates, and didelphid marsupials.


Asunto(s)
Evolución Molecular , Modelos Genéticos , Xenarthra/genética , Animales , Armadillos/genética , Teorema de Bayes , Desastres , Genes BRCA1 , Mutación , Paleontología , Filogenia , Receptores Adrenérgicos alfa 2/genética , Perezosos/genética , América del Sur , Especificidad de la Especie , Factores de Tiempo , Factor de von Willebrand/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...