Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Membranes (Basel) ; 12(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36363619

RESUMEN

The cathode microporous layer (MPL), as one of the key components of the proton exchange membrane fuel cell (PEM-FC), requires specialized carbon materials to ensure the two-phase flow and interfacial effects. In this respect, we designed a novel MPL based on highly hydrophobic carbon nanowalls (CNW). Employing plasma-assisted chemical vapor deposition techniques directly on carbon paper, we produced high-quality microporous layers at a competitive yield-to-cost ratio with distinctive MPL properties: high porosity, good stability, considerable durability, high hydrophobicity, and substantial conductivity. The specific morphological and structural properties were determined by scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Thermo-gravimetric analysis was employed to study the nanostructures' thermal stability and contact angle measurements were performed on the CNW substrate to study the hydrophobic character. Platinum ink, serving as a fuel cell catalyst, was sprayed directly onto the MPLs and incorporated in the FC assembly by hot-pressing against a polymeric membrane to form the membrane-electrode assembly and gas diffusion layers. Single-fuel-cell testing, at moderate temperature and humidity, revealed improved power performance comparable to industrial quality membrane assemblies (500 mW cm-2 mg-1 of cathodic Pt load at 80 °C and 80% RH), with elevated working potential (0.99 V) and impeccable fuel crossover for a low-cost system.

2.
Nanomaterials (Basel) ; 12(16)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36014694

RESUMEN

Ammonia sensors with high sensitivity, reproducible response, and low cost are of paramount importance for medicine, i.e., being a biomarker to diagnose lung and renal conditions, and agriculture, given that fertilizer application and livestock manure account for more than 80% of NH3 emissions. Thus, in this work, we report the fabrication of ultra-sensitive ammonia sensors by a rapid, efficient, and solvent-free laser-based procedure, i.e., laser-induced forward transfer (LIFT). LIFT has been used to transfer carbon nanowalls (CNWs) onto flexible polyimide substrates pre-patterned with metallic electrodes. The feasibility of LIFT is validated by the excellent performance of the laser-printed CNW-based sensors in detecting different concentrations of NH3 in the air, at room temperature. The sensors prepared by LIFT show reversible responses to ammonia when exposed to 20 ppm, whilst at higher NH3 concentrations, the responses are quasi-dosimetric. Furthermore, the laser-printed CNW-based sensors have a detection limit as low as 89 ppb and a response time below 10 min for a 20 ppm exposure. In addition, the laser-printed CNW-based sensors are very robust and can withstand more than 200 bending cycles without loss of performance. This work paves the way for the application and integration of laser-based techniques in device fabrication, overcoming the challenges associated with solvent-assisted chemical functionalization.

3.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884908

RESUMEN

Despite the technological progress of the last decade, dental caries is still the most frequent oral health threat in children and adults alike. Such a condition has multiple triggers and is caused mainly by enamel degradation under the acidic attack of microbial cells, which compose the biofilm of the dental plaque. The biofilm of the dental plaque is a multispecific microbial consortium that periodically develops on mammalian teeth. It can be partially removed through mechanical forces by individual brushing or in specialized oral care facilities. Inhibition of microbial attachment and biofilm formation, as well as methods to strengthen dental enamel to microbial attack, represent the key factors in caries prevention. The purpose of this study was to elaborate a cold plasma-based method in order to modulate microbial attachment and biofilm formation and to improve the retention of fluoride (F-) in an enamel-like hydroxyapatite (HAP) model sample. Our results showed improved F retention in the HAP model, which correlated with an increased antimicrobial and antibiofilm effect. The obtained cold plasma with a dual effect exhibited through biofilm modulation and enamel strengthening through fluoridation is intended for dental application, such as preventing and treating dental caries and enamel deterioration.


Asunto(s)
Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Durapatita/química , Fluoruros/farmacología , Gases em Plasma/farmacología , Presión Atmosférica , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Fluoruros/química , Concentración de Iones de Hidrógeno , Viabilidad Microbiana/efectos de los fármacos , Gases em Plasma/química , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología
4.
Carbohydr Polym ; 272: 118458, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34420718

RESUMEN

In this study, cellulose nanofibers (CNF) obtained via high-pressure microfluidization were 2,6,6-tetra-methylpiperidine-1-oxyl (TEMPO) oxidized (TOCNF) in order to facilitate the grafting of ethylene glycol methyl ether acrylate (EGA). FTIR and XPS analyses revealed a more efficient grafting of EGA oligomers on the surface of TOCNF as compared to the original CNF. As a result, a consistent covering of the TOCNF fibers with EGA oligomers, an increased hydrophobicity and a reduction in porosity were noticed for TOCNF-EGA. However, the swelling ratio of TOCNF-EGA was similar to that of original CNF grafted with EGA and higher than that of TOCNF, because the higher amount of grafted EGA onto oxidized cellulose and the looser structure reduced the contacts between the fibrils and increased the absorption of water. All these results corroborated with a good cytocompatibility and compression strength recommend TOCNF-EGA for applications in regenerative medicine.


Asunto(s)
Acrilatos/química , Celulosa/química , Óxidos N-Cíclicos/química , Glicol de Etileno/química , Nanofibras/química , Celulosa Oxidada/química , Interacciones Hidrofóbicas e Hidrofílicas , Oxidación-Reducción , Espectroscopía de Fotoelectrones/métodos , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Agua/química
5.
Nanomaterials (Basel) ; 11(4)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805134

RESUMEN

We present hybrid nanomaterial architectures, consisting of carbon nanowalls (CNW) templates decorated with tungsten oxide nanoparticles, synthesized using a mechanism based on tungsten oxide sublimation, vapor transport, followed by vapor condensation, in the absence or presence of plasma. The key steps in the decoration mechanism are the sublimation of tungsten oxides, when are exposed in vacuum at high temperature (800 °C), and their redeposition on colder surfaces (400-600 °C). The morphology and chemical composition of the hybrid architectures, as obtained from Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy, are discussed with respect to substrate nature and the physical conditions of synthesis. We pointed out that the decoration process is strongly dependent on the temperature of the CNW templates and plasma presence. Thus, the decoration process performed with plasma was effective for a wider range of template temperatures, in contrast with the decoration process performed without plasma. The results are useful for applications using the sensing and photochemical properties of tungsten oxides, and have also relevance for fusion technology, tungsten walls erosion and material redeposition being widely observed in fusion machines.

6.
Polymers (Basel) ; 12(7)2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32646005

RESUMEN

Microcrystalline cellulose (MCC) was surface modified by two approaches, namely a plasma treatment in liquid using a Y-shaped tube for oxygen flow (MCC-P) and a TEMPO mediated oxidation (MCC-T). Both treatments led to the surface functionalization of cellulose as illustrated by FTIR and XPS results. However, TEMPO oxidation had a much stronger oxidizing effect, leading to a decrease of the thermal stability of MCC by 80 °C. Plasma and TEMPO modified celluloses were incorporated in a poly(3-hydroxybutyrate) (PHB) matrix and they influenced the morphology, thermal, and mechanical properties of the composites (PHB-MCC-P and PHB-MCC-T) differently. However, both treatments were efficient in improving the fiber-polymer interface and the mechanical properties, with an increase of the storage modulus of composites by 184% for PHB-MCC-P and 167% for PHB-MCC-T at room temperature. The highest increase of the mechanical properties was observed in the composite containing plasma modified cellulose although TEMPO oxidation induced a much stronger surface modification of cellulose. This was due to the adverse effect of more advanced degradation in this last case. The results showed that Y-shaped plasma jet oxidation of cellulose water suspensions is a simple and cheap treatment and a promising method of cellulose functionalization for PHB and other biopolymer reinforcements.

7.
Nanomaterials (Basel) ; 9(5)2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31126109

RESUMEN

Although the origin and possible mechanisms for green and yellow emission from different zinc oxide (ZnO) forms have been extensively investigated, the same for red/orange PL emission from ZnO nanorods (nR) remains largely unaddressed. In this work, vertically aligned zinc oxide nanorods arrays (ZnO nR) were produced using hydrothermal process followed by plasma treatment in argon/sulfur hexafluoride (Ar/SF6) gas mixture for different time. The annealed samples were highly crystalline with ~45 nm crystallite size, (002) preferred orientation, and a relatively low strain value of 1.45 × 10-3, as determined from X-ray diffraction pattern. As compared to as-deposited ZnO nR, the plasma treatment under certain conditions demonstrated enhancement in the room temperature photoluminescence (PL) emission intensity, in the visible orange/red spectral regime, by a factor of 2. The PL intensity enhancement induced by SF6 plasma treatment may be attributed to surface chemistry modification as confirmed by X-ray photoelectron spectroscopy (XPS) studies. Several factors including presence of hydroxyl group on the ZnO surface, increased oxygen level in the ZnO lattice (OL), generation of F-OH and F-Zn bonds and passivation of surface states and bulk defects are considered to be active towards red/orange emission in the PL spectrum. The PL spectra were deconvoluted into component Gaussian sub-peaks representing transitions from conduction-band minimum (CBM) to oxygen interstitials (Oi) and CBM to oxygen vacancies (VO) with corresponding photon energies of 2.21 and 1.90 eV, respectively. The optimum plasma treatment route for ZnO nanostructures with resulting enhancement in the PL emission offers strong potential for photonic applications such as visible wavelength phosphors.

8.
Sci Rep ; 8(1): 15473, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30341312

RESUMEN

Submerged liquid plasma (SLP) is a new and promising method to modify powder materials. Up to now, this technique has been mostly applied to carbonaceous materials, however, SLP shows great potential as a low-cost and environmental-friendly method to modify cellulose. In this work we demonstrate the modification of microcrystalline cellulose (MCC) by applying the SLP combined with ultrasonication treatments. The plasma generated either in an inert (argon) or reactive (argon: oxygen or argon:nitrogen) gas was used in MCC dispersions in water or acetonitrile:water mixtures. An enhanced defibrillation of MCC has been observed following the application of SLP. Furthermore, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy have been applied to investigate the surface functionalization of MCC with oxygen or nitrogen moieties. Depending on the plasma treatment applied, poly (3-hydroxybutyrate) composites fabricated with the plasma modified cellulose fibers showed better thermal stability and mechanical properties than pristine PHB. This submerged liquid plasma processing method offers a unique approach for the activation of cellulose for defibrillation and functionalization, aiming towards an improved reinforcing ability of biopolymers.


Asunto(s)
Celulosa/química , Gases em Plasma/química , Butiratos/química , Celulosa/ultraestructura , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Temperatura , Termogravimetría , Difracción de Rayos X
9.
Nanomaterials (Basel) ; 8(7)2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-29949943

RESUMEN

Tailoring the surface properties of nanocellulose to improve the compatibility of components in polymer nanocomposites is of great interest. In this work, dispersions of nanocellulose in water and acetonitrile were functionalized by submerged plasmas, with the aim of increasing the quality of this reinforcing agent in biopolymer composite materials. Both the morphology and surface chemistry of nanocellulose were influenced by the application of a plasma torch and filamentary jet plasma in a liquid suspension of nanocellulose. Depending on the type of plasma source and gas mixture the surface chemistry was modified by the incorporation of oxygen and nitrogen containing functional groups. The treatment conditions which lead to nanocellulose based polymer nanocomposites with superior mechanical properties were identified. This work provides a new eco-friendly method for the surface functionalization of nanocellulose directly in water suspension, thus overcoming the disadvantages of chemical treatments.

10.
Molecules ; 21(12)2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27983598

RESUMEN

Using plasma in conjunction with fluorinated compounds is widely encountered in material processing. We discuss several plasma techniques for surface fluorination: deposition of fluorocarbon thin films either by magnetron sputtering of polytetrafluoroethylene targets, or by plasma-assisted chemical vapor deposition using tetrafluoroethane as a precursor, and modification of carbon nanowalls by plasma treatment in a sulphur hexafluoride environment. We showed that conformal fluorinated thin films can be obtained and, according to the initial surface properties, superhydrophobic surfaces can be achieved.


Asunto(s)
Flúor/química , Gases em Plasma , Humectabilidad , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
11.
Mater Sci Eng C Mater Biol Appl ; 48: 118-25, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25579904

RESUMEN

The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro.


Asunto(s)
Carbono/química , Macrófagos/fisiología , Nanoestructuras/química , Actinas/metabolismo , Animales , Materiales Biocompatibles/química , Adhesión Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Quimiocina CCL3/metabolismo , Citoesqueleto/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Inflamatorias de Macrófagos/metabolismo , Macrófagos/citología , Ratones , Nitrógeno/química , Oxígeno/química , Espectroscopía de Fotoelectrones , Propiedades de Superficie , Ingeniería de Tejidos/métodos , Factor de Necrosis Tumoral alfa/metabolismo , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...