Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(3): 3829-3840, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38214484

RESUMEN

In the quest for thinner and more efficient ferroelectric devices, Hf0.5Zr0.5O2 (HZO) has emerged as a potential ultrathin and lead-free ferroelectric material. Indeed, when deposited on a TiN electrode, 1-25 nm thick HZO exhibits excellent ferroelectricity capability, allowing the prospective miniaturization of capacitors and transistor devices. To investigate the origin of ferroelectricity in HZO thin films, we conducted a far-infrared (FIR) spectroscopic study on 5 HZO films with thicknesses ranging from 10 to 52 nm, both within and out of the ferroelectric thickness range where ferroelectric properties are observed. Based on X-ray diffraction, these HZO films are estimated to contain various proportions of monoclinic (m-), tetragonal (t-), and polar orthorhombic (polar o-) phases, while only the 11, 17, and 21 nm thick are expected to include a higher amount of polar o-phase. We coupled the HZO infrared measurements with DFT simulations for these m-, t-, and polar o-crystallographic structures. The approach used was based on the supercell method, which combines all possible Hf/Zr mixed atomic sites in the solid solution. The excellent agreement between measured and simulated spectra allows assigning most bands and provides infrared signatures for the various HZO structures, including the polar orthorhombic form. Beyond pure assignment of bands, the DFT IR spectra averaging using a mix of different compositions (e.g., 70% polar o-phase +30% m-phase) of HZO DFT crystal phases allows quantification of the percentage of different structures inside the different HZO film thicknesses. Regarding the experimental data analysis, we used the spectroscopic data to perform a Kramers-Kronig constrained variational fit to extract the optical functions of the films using a Drude-Lorentz-based model. We found that the ferroelectric films could be described using a set of about 7 oscillators, which results in static dielectric constants in good agreement with theoretical values and previously reported ones for HfO2-doped ferroelectric films.

3.
ACS Nano ; 17(16): 15687-15695, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37549002

RESUMEN

Two-dimensional (2D) honeycomb lattices beyond graphene, such as germanene, appear very promising due to their outstanding electronic properties, such as the quantum spin Hall effects. While there have been many claims of germanene monolayers up to now, no experimental evidence of a honeycomb structure has been provided up to now for these grown monolayers. Using scanning tunneling microscopy (STM), surface X-ray diffraction (SXRD), and density functional theory, we have elucidated the Ge-induced (109×109)R±24.5° reconstruction on Ag(111). We demonstrate that a powerful algorithm combining SXRD with STM allows us to solve a giant surface reconstruction with more than a hundred atoms per unit cell. Its extensive unit cell indeed consists of 98 2-fold or 3-fold coordinated Ge atoms, forming a periodic arrangement of pentagons, hexagons, and heptagons, with the inclusion of six dispersed Ag atoms. By analogy, we show that the (77×77)R±19.1° reconstruction obtained by segregation of Ge through an epitaxial Ag/Ge(111) film possesses a similar structure, i.e., Ge pentagons/hexagons/heptagons with a few Ag atoms. Such an organization is more stable than that of pure Ge monolayers and can be assigned to the ground state of epitaxial germanene.

4.
ACS Appl Mater Interfaces ; 15(15): 19593-19603, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37018536

RESUMEN

Steel is the most commonly manufactured material in the world. Its performances can be improved by hot-dip coating with the low weight aluminum metal. The structure of the Al∥Fe interface, which is known to contain a buffer layer made of complex intermetallic compounds such as Al5Fe2 and Al13Fe4, is crucial for the properties. On the basis of surface X-ray diffraction, combined with theoretical calculations, we derive in this work a consistent model at the atomic scale for the complex Al13Fe4(010)∥Al5Fe2(001) interface. The epitaxial relationships are found to be [130]Al5Fe2∥[010]Al13Fe4 and [1 1̅0]Al5Fe2 ∥[100]Al13Fe4. Interfacial and constrained energies, as well as works of adhesion, calculated for several structural models based on density functional theory, identify the lattice mismatch and the interfacial chemical composition as main factors for the stability of the interface. Molecular dynamics simulations suggest a mechanism of Al diffusion to explain the formation of the complex Al13Fe4 and Al5Fe2 phases at the Al∥Fe interface.

5.
ACS Appl Mater Interfaces ; 15(8): 11268-11280, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36791093

RESUMEN

Ohmic or Schottky contacts in micro- and nanoelectronic devices are formed by metal-semiconductor bilayer systems, based on elemental metals or thermally more stable metallic compounds (germanides, silicides). The control of their electronic properties remains challenging as their structure formation is not yet fully understood. We have studied the phase and microstructure evolution during sputter deposition and postgrowth annealing of Pd/a-Ge bilayer systems with different Pd/Ge ratios (Pd:Ge, 2Pd:Ge, and 4Pd:Ge). The room-temperature deposition of up to 30 nm Pd was monitored by simultaneous, in situ synchrotron X-ray diffraction, X-ray reflectivity, and optical stress measurements. With this portfolio of complementary real-time methods, we could identify the microstructural origins of the resistivity evolution during contact formation: Real-time X-ray diffraction measurements indicate a coherent, epitaxial growth of Pd(111) on the individual crystallites of the initially forming, polycrystalline Pd2Ge[111] layer. The crystallization of the Pd2Ge interfacial layer causes a characteristic change in the real-time wafer curvature (tensile peak), and a significant drop of the resistivity after 1.5 nm Pd deposition. In addition, we could confirm the isostructural interface formation of Pd/a-Ge and Pd/a-Si. Subtle differences between both interfaces originate from the lattice mismatch at the interface between compound and metal. The solid-state reaction during subsequent annealing was studied by real-time X-ray diffraction and complementary UHV surface analysis. We could establish the link between phase and microstructure formation during deposition and annealing-induced solid-state reaction: The thermally induced reaction between Pd and a-Ge proceeds via diffusion-controlled growth of the Pd2Ge seed crystallites. The second-phase (PdGe) formation is nucleation-controlled and takes place only when a sufficient Ge reservoir exists. The real-time access to structure and electronic properties on the nanoscale opens new paths for the knowledge-based formation of ultrathin metal/semiconductor contacts.

6.
Soft Matter ; 18(25): 4792-4802, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35708225

RESUMEN

New collective optical properties have emerged recently from organized and oriented arrays of closely packed semiconducting and metallic nanoparticles (NPs). However, it is still challenging to obtain NP assemblies which are similar everywhere on a given sample and, most importantly, share a unique common orientation that would guarantee a unique behavior everywhere on the sample. In this context, by combining optical microscopy, fluorescence microscopy and synchrotron-based grazing incidence X-ray scattering (GISAXS) of assemblies of gold nanospheres and of fluorescent nanorods, we study the interactions between NPs and liquid crystal smectic topological defects that can ultimately lead to unique NP orientations. We demonstrate that arrays of one-dimensional - 1D (dislocations) and two-dimensional - 2D (grain boundaries) topological defects oriented along one single direction confine and organize NPs in closely packed networks but also orient both single nanorods and NP networks along the same direction. Through the comparison between smectic films associated with different kinds of topological defects, we highlight that the coupling between the NP ligands and the smectic layers below the grain boundaries may be necessary to allow for fixed NP orientation. This is in contrast with 1D defects, where the induced orientation of the NPs is intrinsically induced by the confinement independently of the ligand nature. We thus succeeded in achieving the fixed polarization of assemblies of single photon emitters in defects. For gold nanospheres confined in grain boundaries, a strict orientation of hexagonal networks has been obtained with the 〈10〉 direction strictly parallel to the defects. With such closely packed and oriented NPs, new collective properties are now foreseen.

7.
Phys Chem Chem Phys ; 22(43): 24917-24933, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33135021

RESUMEN

The increasing interest in atomic layer deposition (ALD) of Pt for the controlled synthesis of supported nanoparticles for catalysis demands an in-depth understanding of the nucleation controlled growth behaviour. We present an in situ investigation of Pt ALD on planar Si substrates, with native SiO2, by means of X-ray fluorescence (XRF) and grazing incidence small-angle X-ray scattering (GISAXS), using a custom-built synchrotron-compatible high-vacuum ALD setup and focusing on the thermal Pt ALD process, comprising (methylcyclopentadienyl)trimethylplatinum (MeCpPtMe3) and O2 gas at 300 °C. The evolution in key scattering features provides insights into the growth kinetics of Pt deposits from small nuclei to isolated islands and coalesced worm-like structures. An analysis approach is introduced to extract dynamic information on the average real space parameters, such as Pt cluster shape, size, and spacing. The results indicate a nucleation stage, followed by a diffusion-mediated particle growth regime that is marked by a decrease in average areal density and the formation of laterally elongated Pt clusters. Growth of the Pt nanoparticles is thus not only governed by the adsorption of Pt precursor molecules from the gas-phase and subsequent combustion of the ligands, but is largely determined by adsorption of migrating Pt species on the surface and diffusion-driven particle coalescence. Moreover, the influence of the Pt precursor dose on the particle nucleation and growth is investigated. It is found that the precursor dose influences the deposition rate (number of Pt atoms per cycle), while the particle morphology for a specific Pt loading is independent of the precursor dose used in the ALD process. Our results prove that combining in situ GISAXS and XRF provides an excellent experimental strategy to obtain new fundamental insights about the role of deposition parameters on the morphology of Pt ALD depositions. This knowledge is vital to improve control over the Pt nucleation stage and enable efficient synthesis of supported nanocatalysts.

9.
ACS Appl Mater Interfaces ; 12(35): 39787-39797, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32805978

RESUMEN

A few low-order approximants to decagonal quasicrystals have been shown to provide excellent activity and selectivity for the hydrogenation of alkenes and alkynes. It is the case for the Al13Co4 compound, for which the catalytic properties of the pseudo-2-fold orientation have been revealed to be among the best. A combination of surface science studies, including surface X-ray diffraction, and calculations based on density functional theory is used here to derive an atomistic model for the pseudo-2-fold o-Al13Co4 surface, whose faceted and columnar structure is found very similar to the one of the 2-fold surface of the d-Al-Ni-Co quasicrystal. Facets substantially stabilize the system, with energies in the range 1.19-1.31 J/m2, i.e., much smaller than the ones of the pseudo-10-fold (1.49-1.68 J/m2) and pseudo-2-fold (1.66 J/m2) surfaces. Faceting is also a main factor at the origin of the Al13Co4 catalytic performances, as illustrated by the comparison of the pseudo-10-fold, pseudo-2-fold and facet potential energy maps for hydrogen adsorption. This work gives insights toward the design of complex intermetallic catalysts through surface nanostructuration for optimized catalytic performances.

10.
Sci Rep ; 10(1): 12760, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728084

RESUMEN

We explore the use of continuous scanning during data acquisition for Bragg coherent diffraction imaging, i.e., where the sample is in continuous motion. The fidelity of continuous scanning Bragg coherent diffraction imaging is demonstrated on a single Pt nanoparticle in a flow reactor at [Formula: see text] in an Ar-based gas flowed at 50 ml/min. We show a reduction of 30% in total scan time compared to conventional step-by-step scanning. The reconstructed Bragg electron density, phase, displacement and strain fields are in excellent agreement with the results obtained from conventional step-by-step scanning. Continuous scanning will allow to minimise sample instability under the beam and will become increasingly important at diffraction-limited storage ring light sources.

11.
ACS Appl Mater Interfaces ; 11(42): 39315-39323, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547648

RESUMEN

Synchrotron experiments combining real-time stress, X-ray diffraction, and X-ray reflectivity measurements, complemented by in situ electron diffraction and photon electron spectroscopy measurements, revealed a detailed picture of the interfacial silicide formation during deposition of ultrathin Pd layers on amorphous silicon. Initially, an amorphous Pd2Si interlayer is formed. At a critical thickness of 2.3 nm, this layer crystallizes and the resulting volume reduction leads to a tensile stress buildup. The [111] textured Pd2Si layer continues to grow up to a thickness of ≈3.7 nm and is subsequently covered by a Pd layer with [111] texture. The tensile stress relaxes already during Pd2Si growth. A comparison between the texture formation on SiOx and a-Si shows that the silicide layer serves as a template for the Pd layer, resulting in a surprisingly narrow texture of only 3° after 800 s Pd deposition. The texture formation of Pd and Pd2Si can be explained by the low lattice mismatch between Pd(111) and Pd2Si(111). The combined experimental results indicate a similar interface formation mechanism for Pd on a-Si and c-Si, whereas the resulting silicide texture depends on the Si surface. A new strain relaxation mechanism via grain boundary diffusion is proposed, taking into account the influence of the thickness-dependent crystallization on the material transport through the silicide layer. In combination with the small lattice mismatch, the grain boundary diffusion facilitates the growth of Pd clusters, explaining thus the well-defined thickness of the interfacial silicide layer, which limits the miniaturization of self-organized silicide layers for microelectronic devices.

12.
Nanoscale ; 11(2): 752-761, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30566167

RESUMEN

Au-Cu bimetallic nanoparticles (NPs) grown on TiO2(110) have been followed in situ using grazing incidence X-ray diffraction and X-ray photoemission spectroscopy from their synthesis to their exposure to a CO/O2 mixture at low pressure (P < 10-5 mbar) and at different temperatures (300 K-470 K). As-prepared samples are composed of two types of alloyed NPs: randomly oriented and epitaxial NPs. Whereas the introduction of CO has no effect on the structure of the NPs, an O2 introduction triggers a Cu surface segregation phenomenon resulting in the formation of a Cu2O shell reducible by annealing the sample over 430 K. A selective re-orientation of the nanoparticles, induced by the exposure to a CO/O2 mixture, is observed where the randomly oriented NPs take advantage of the mobility induced by the Cu segregation to re-orient their Au-rich core relatively to the TiO2(110) substrate following specifically the orientation ((111)NPs//(110)TiO2) when others epitaxial relationships were observed on the as-prepared sample.

13.
ACS Appl Mater Interfaces ; 10(33): 28003-28014, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30085643

RESUMEN

Multiferroic biphase systems with robust ferromagnetic and ferroelectric response at room temperature would be ideally suitable for voltage-controlled nonvolatile memories. Understanding the role of strain and charges at interfaces is central for an accurate control of the ferroelectricity as well as of the ferromagnetism. In this paper, we probe the relationship between the strain and the ferromagnetic/ferroelectric properties in the layered CoFe2O4/BaTiO3 (CFO/BTO) model system. For this purpose, ultrathin epitaxial bilayers, ranging from highly strained to fully relaxed, were grown by molecular beam epitaxy on Nb:SrTiO3(001). The lattice characteristics, determined by X-ray diffraction, evidence a non-intuitive cross-correlation: the strain in the bottom BTO layer depends on the thickness of the top CFO layer and vice versa. Plastic deformation participates in the relaxation process through dislocations at both interfaces, revealed by electron microscopy. Importantly, the switching of the BTO ferroelectric polarization, probed by piezoresponse force microscopy, is found dependent on the CFO thickness: the larger is the latter, the easiest is the BTO switching. In the thinnest thickness regime, the tetragonality of BTO and CFO has a strong impact on the 3d electronic levels of the different cations, which were probed by X-ray linear dichroism. The quantitative determination of the nature and repartition of the magnetic ions in CFO, as well as of their magnetic moments, has been carried out by X-ray magnetic circular dichroism, with the support of multiplet calculations. While bulklike ferrimagnetism is found for 5-15 nm thick CFO layers with a magnetization resulting as expected from the Co2+ ions alone, important changes occur at the interface with BTO over a thickness of 2-3 nm because of the formation of Fe2+ and Co3+ ions. This oxidoreduction process at the interface has strong implications concerning the mechanisms of polarity compensation and coupling in multiferroic heterostructures.

14.
Nano Lett ; 17(1): 341-347, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-27981850

RESUMEN

Producing a usable semiconducting form of graphene has plagued the development of graphene electronics for nearly two decades. Now that new preparation methods have become available, graphene's intrinsic properties can be measured and the search for semiconducting graphene has begun to produce results. This is the case of the first graphene "buffer" layer grown on SiC(0001) presented in this work. We show, contrary to assumptions of the last 40 years, that the buffer graphene layer is not commensurate with SiC. The new modulated structure we've found resolves a long-standing contradiction where ab initio calculations expect a metallic buffer, while experimentally it is found to be a semiconductor. Model calculations using the new incommensurate structure show that the semiconducting π-band character of the buffer comes from partially hybridized graphene incommensurate boundaries surrounding unperturbed graphene islands.

15.
ACS Nano ; 9(12): 11678-89, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26521895

RESUMEN

We investigated composite films of gold nanoparticles (NPs)/liquid crystal (LC) defects as a model system to understand the key parameters, which allow for an accurate control of NP anisotropic self-assemblies using soft templates. We combined spectrophotometry, Raman spectroscopy, and grazing incidence small-angle X-ray scattering with calculations of dipole coupling models and soft sphere interactions. We demonstrate that dense arrays of elementary edge dislocations can strongly localize small NPs along the defect cores, resulting in formation of parallel chains of NPs. Furthermore, we show that within the dislocation cores the inter-NP distances can be tuned. This phenomenon appears to be driven by the competition between "soft (nano)sphere" attraction and LC-induced repulsion. We evidence two extreme regimes controlled by the solvent evaporation: (i) when the solvent evaporates abruptly, the spacing between neighboring NPs in the chains is dominated by van der Waals interactions between interdigitated capping ligands, leading to chains of close-packed NPs; (ii) when the solvent evaporates slowly, strong interdigitation between the is avoided, leading to a dominating LC-induced repulsion between NPs associated with the replacement of disordered cores by NPs. The templating of NPs by topological defects, beyond the technological inquiries, may enable creation, investigation, and manipulation of unique collective features for a wide range of nanomaterials.

16.
Phys Chem Chem Phys ; 17(8): 5795-804, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25626848

RESUMEN

The correlation between surface structure, stoichiometry and atomic occupancy of the polar MgAl2O4(100) surface has been studied with an interplay of noncontact atomic force microscopy, X-ray photoelectron spectroscopy and surface X-ray diffraction under ultrahigh vacuum conditions. The Al/Mg ratio is found to significantly increase as the surface is sputtered and annealed in oxygen at intermediate temperatures ranging from 1073-1273 K. The Al excess is explained by the observed surface structure, where the formation of nanometer-sized pits and elongated patches with Al terminated step edges contribute to stabilizing the structure by compensating surface polarity. Surface X-ray diffraction reveals a reduced occupancy in the top two surface layers for both Mg, Al, and O and, moreover, vacancies are preferably located in octahedral sites, indicating that Al and Mg ions interchange sites. The excess of Al and high concentration of octahedral vacancies, very interestingly, indicates that the top few surface layers of the MgAl2O4(100) adopts a surface structure similar to that of a spinel-like transition Al2O3 film. However, after annealing at a high temperature of 1473 K, the Al/Mg ratio restores to its initial value, the occupancy of all elements increases, and the surface transforms into a well-defined structure with large flat terraces and straight step edges, indicating a restoration of the surface stoichiometry. It is proposed that the tetrahedral vacancies at these high temperatures are filled by Mg from the bulk, due to the increased mobility at high annealing temperatures.

17.
Nanoscale ; 6(24): 15107-16, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25371292

RESUMEN

A comprehensive study on the electromechanical behavior of nanoparticle-based resistive strain gauges in action through normal and grazing incidence small angle X-ray scattering (SAXS/GISAXS) investigations is presented. The strain gauges were fabricated from arrays of colloidal gold nanoparticle (NP) wires assembled on flexible polyethylene terephthalate and polyimide substrates by convective self-assembly. Microstructural changes (mean interparticle distance variations) within these NP wires under uniaxial stretching estimated by SAXS/GISAXS are correlated to their macroscopic electrical resistance variations. SAXS measurements suggest a linear longitudinal extension and transversal contraction of the NP wires with applied strain (0 to ∼ 13%). The slope of this longitudinal variation is less than unity, implying a partial strain transfer from the substrate to the NP wires. The simultaneously measured electrical resistance of the strain gauges shows an exponential variation within the elastic domain of the substrate deformation, consistent with electron tunnelling through the interparticle gaps. A slower variation observed within the plastic domain suggests the formation of new electronic conduction pathways. Implications of transversal contraction of the NP wires on the directional sensitivities of strain gauges are evaluated by simulating electronic conduction in models mimicking a realistic NP arrangement. A loss of directionality of the NP-based strain gauges due to transversal current flow within the NP wires is deduced.

18.
ACS Nano ; 7(5): 4022-9, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23627649

RESUMEN

Self-assembled vertical epitaxial nanostructures form a new class of heterostructured materials that has emerged in recent years. Interestingly, such kind of architectures can be grown using combinatorial processes, implying sequential deposition of distinct materials. Although opening many perspectives, this combinatorial nature has not been fully exploited yet. This work demonstrates that the combinatorial character of the growth can be further exploited in order to obtain alloy nanowires coherently embedded in a matrix. This issue is illustrated in the case of a fully epitaxial system: CoxNi1-x nanowires in CeO2/SrTiO3(001). The advantage brought by the ability to grow alloys is illustrated by the control of the magnetic anisotropy of the nanowires when passing from pure Ni wires to CoxNi1-x alloys. Further exploitation of this combinatorial approach may pave the way toward full three-dimensional heteroepitaxial architectures through axial structuring of the wires.

19.
Phys Rev Lett ; 107(3): 036102, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21838378

RESUMEN

From an interplay of atom-resolved noncontact atomic force microscopy, surface x-ray diffraction experiments, and density functional theory calculations, we reveal the detailed atomic-scale structure of the (100) surface of an insulating ternary metal oxide, MgAl2O4 (spinel). We surprisingly find that the MgAl2O4(100) surface is terminated by an Al and O-rich structure with a thermodynamically favored amount of Al atoms interchanged with Mg. This finding implies that so-called Mg-Al antisites, which are defects in the bulk of MgAl2O4, become a thermodynamically stable and integral part of the surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...