Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 7(7): 932-941, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34155372

RESUMEN

Plant molecular farming, that is, using plants as hosts for production of therapeutic proteins and high-value compounds, has gained substantial interest in recent years. Chloroplasts in particular are an attractive subcellular compartment for expression of foreign genes. Here, we present a new method for transgene introduction and expression in chloroplasts that, unlike classically used approaches, does not require transgene insertion into the chloroplast genome. Instead, the transgene is amplified as a physically independent entity termed a 'minichromosome'. Amplification occurs in the presence of a helper protein that initiates the replication process via recognition of specific sequences flanking the transgene, resulting in accumulation of extremely high levels of transgene DNA. Importantly, we demonstrate that such amplified transgenes serve as a template for foreign protein expression, are maintained stably during plant development and are maternally transmitted to the progeny. These findings indicate that the minichromosome-based approach is an attractive tool for transgene expression in chloroplasts and for organelle genome engineering.


Asunto(s)
Biotecnología/métodos , Replicación del ADN , Ingeniería Genética/métodos , Genoma de Plastidios , Nicotiana/genética , Fitomejoramiento/métodos , Transformación Genética , Plantas Modificadas Genéticamente
2.
Plant J ; 63(5): 778-90, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20561261

RESUMEN

Snf1-related protein kinases 2 (SnRK2s) are major positive regulators of drought stress tolerance. The kinases of this family are activated by hyperosmotic stress, but only some of them are also responsive to abscisic acid (ABA). Moreover, genetic evidence has indicated the ABA-independence of SnRK2 activation in the fast response to osmotic stress. Although phosphorylation was demonstrated to be crucial for the activation or activity of the kinases of both subgroups, different phosphorylation mechanisms were suggested. Here, using one kinase from each subgroup (SnRK2.6 and SnRK2.10), two phosphorylation sites within the activation loop were identified by mass spectrometry after immunoprecipitation from Arabidopsis cells treated by ABA or osmolarity. By site-directed mutagenesis, the phosphorylation of only one of the two sites was shown to be necessary for the catalytic activity of the kinase, whereas both sites are necessary for the full activation of the two SnRK2s by hyperosmolarity or ABA. Phosphoprotein staining together with two-dimensional PAGE followed by immunoblotting indicated distinct phosphorylation mechanisms of the two kinases. While SnRK2.6 seems to be activated through the independent phosphorylation of these two sites, a sequential process occurs in SnRK2.10, where phosphorylation of one serine is required for the phosphorylation of the other. In addition, a subgroup of protein phosphatases 2C which interact and participate in the regulation of SnRK2.6 do not interact with SnRK2.10. Taken together, our data bring evidence for the involvement of distinct phosphorylation mechanisms in the activation of SnRK2.6 and SnRK2.10, which may be conserved between the two subgroups of SnRK2s depending on their ABA-responsiveness.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sitios de Unión/genética , Biocatálisis/efectos de los fármacos , Western Blotting , Electroforesis en Gel Bidimensional , Activación Enzimática/efectos de los fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Espectrometría de Masas , Mutagénesis Sitio-Dirigida , Concentración Osmolar , Fosforilación , Reguladores del Crecimiento de las Plantas/farmacología , Unión Proteica , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética
3.
Physiol Plant ; 140(2): 199-207, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20553416

RESUMEN

Prolyl 4-hydroxylases (P4Hs) catalyze the proline hydroxylation, a major post-translational modification, of hydroxyproline-rich glycoproteins. Two carnation petal P4H cDNAs, (Dianthus caryophyllus prolyl 4-hydroxylase) DcP4H1 and DcP4H2, were identified and characterized at the gene expression and biochemical level in order to investigate their role in flower senescence. Both mRNAs showed similar patterns of expression with stable transcript abundance during senescence progression and differential tissue-specific expression with DcP4H1 and DcP4H2 strongly expressed in ovaries and stems, respectively. Recombinant DcP4H1 and DcP4H2 proteins were produced and their catalytic properties were determined. Pyridine 2,4-dicarboxylate (PDCA) was identified as a potent inhibitor of the in vitro enzyme activity of both P4Hs and used to determine whether inhibition of proline hydroxylation in petals is involved in senescence progression of cut carnation flowers. PDCA suppressed the climacteric ethylene production indicating a strong correlation between the inhibition of DcP4H1 and DcP4H2 activity in vitro by PDCA and the suppression of climacteric ethylene production in cut carnation flowers.


Asunto(s)
Dianthus/enzimología , Flores/enzimología , Proteínas de Plantas/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Secuencia de Aminoácidos , Animales , Biocatálisis/efectos de los fármacos , Northern Blotting , Línea Celular , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Dianthus/genética , Dianthus/crecimiento & desarrollo , Electroforesis en Gel de Poliacrilamida , Etilenos/biosíntesis , Flores/genética , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Datos de Secuencia Molecular , Consumo de Oxígeno/efectos de los fármacos , Proteínas de Plantas/genética , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Procolágeno-Prolina Dioxigenasa/genética , Piridinas/farmacología , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Spodoptera , Especificidad por Sustrato
4.
Plant Cell ; 21(10): 3170-84, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19855047

RESUMEN

The plant hormone abscisic acid (ABA) orchestrates plant adaptive responses to a variety of stresses, including drought. This signaling pathway is regulated by reversible protein phosphorylation, and genetic evidence demonstrated that several related protein phosphatases 2C (PP2Cs) are negative regulators of this pathway in Arabidopsis thaliana. Here, we developed a protein phosphatase profiling strategy to define the substrate preferences of the HAB1 PP2C implicated in ABA signaling and used these data to screen for putative substrates. Interestingly, this analysis designated the activation loop of the ABA activated kinase OST1, related to Snf1 and AMPK kinases, as a putative HAB1 substrate. We experimentally demonstrated that HAB1 dephosphorylates and deactivates OST1 in vitro. Furthermore, HAB1 and the related PP2Cs ABI1 and ABI2 interact with OST1 in vivo, and mutations in the corresponding genes strongly affect OST1 activation by ABA. Our results provide evidence that PP2Cs are directly implicated in the ABA-dependent activation of OST1 and further suggest that the activation mechanism of AMPK/Snf1-related kinases through the inhibition of regulating PP2Cs is conserved from plants to human.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Quinasas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biología Computacional , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Inmunoprecipitación , Fosfoproteínas Fosfatasas/genética , Fosforilación/efectos de los fármacos , Proteínas Quinasas/genética , Proteína Fosfatasa 2C , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
5.
J Exp Bot ; 60(5): 1439-63, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19181866

RESUMEN

Stomatal guard cells are functionally specialized epidermal cells usually arranged in pairs surrounding a pore. Changes in ion fluxes, and more specifically osmolytes, within the guard cells drive opening/closing of the pore, allowing gas exchange while limiting water loss through evapo-transpiration. Adjustments of the pore aperture to optimize these conflicting needs are thus centrally important for land plants to survive, especially with the rise in CO(2) associated with global warming and increasing water scarcity this century. The basic biophysical events in modulating membrane transport have been gradually delineated over two decades. Genetics and molecular approaches in recent years have complemented and extended these earlier studies to identify major regulatory nodes. In Arabidopsis, the reference for guard cell genetics, stomatal opening driven by K(+) entry is mainly through KAT1 and KAT2, two voltage-gated K(+) inward-rectifying channels that are activated on hyperpolarization of the plasma membrane principally by the OST2 H(+)-ATPase (proton pump coupled to ATP hydrolysis). By contrast, stomatal closing is caused by K(+) efflux mainly through GORK, the outward-rectifying channel activated by membrane depolarization. The depolarization is most likely initiated by SLAC1, an anion channel distantly related to the dicarboxylate/malic acid transport protein found in fungi and bacteria. Beyond this established framework, there is also burgeoning evidence for the involvement of additional transporters, such as homologues to the multi-drug resistance proteins (or ABC transporters) as intimated by several pharmacological and reverse genetics studies. General inhibitors of protein kinases and protein phosphatases have been shown to profoundly affect guard cell membrane transport properties. Indeed, the first regulatory enzymes underpinning these transport processes revealed genetically were several protein phosphatases of the 2C class and the OST1 kinase, a member of the SnRK2 family. Taken together, these results are providing the first glimpses of an emerging signalling complex critical for modulating the stomatal aperture in response to environmental stimuli.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/fisiología , Estomas de Plantas/fisiología , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequías , Activación del Canal Iónico , Estomas de Plantas/citología , Estomas de Plantas/genética
6.
Plant J ; 55(1): 104-17, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18363786

RESUMEN

Most signaling networks are regulated by reversible protein phosphorylation. The specificity of this regulation depends in part on the capacity of protein kinases to recognize and efficiently phosphorylate particular sequence motifs in their substrates. Sequenced plant genomes potentially encode over than 1000 protein kinases, representing 4% of the proteins, twice the proportion found in humans. This plethora of plant kinases requires the development of high-throughput strategies to identify their substrates. In this study, we have implemented a semi-degenerate peptide array screen to define the phosphorylation preferences of four kinases from Arabidopsis thaliana that are representative of the plant calcium-dependent protein kinase and Snf1-related kinase superfamily. We converted these quantitative data into position-specific scoring matrices to identify putative substrates of these kinases in silico in protein sequence databases. Our data show that these kinases display related but nevertheless distinct phosphorylation motif preferences, suggesting that they might share common targets but are likely to have specific substrates. Our analysis also reveals that a conserved motif found in the stress-related dehydrin protein family may be targeted by the SnRK2-10 kinase. Our results indicate that semi-degenerate peptide array screening is a versatile strategy that can be used on numerous plant kinases to facilitate identification of their substrates, and therefore represents a valuable tool to decipher phosphorylation-regulated signaling networks in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Análisis por Matrices de Proteínas , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Escherichia coli/enzimología , Datos de Secuencia Molecular , Fosforilación , Especificidad por Sustrato
7.
Mol Plant ; 1(2): 198-217, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19825533

RESUMEN

The mode of abscisic acid (ABA) action, and its relations to drought adaptive responses in particular, has been a captivating area of plant hormone research for much over a decade. The hormone triggers stomatal closure to limit water loss through transpiration, as well as mobilizes a battery of genes that presumably serve to protect the cells from the ensuing oxidative damage in prolonged stress. The signaling network orchestrating these various responses is, however, highly complex. This review summarizes several significant advances made within the last few years. The biosynthetic pathway of the hormone is now almost completely elucidated, with the latest identification of the ABA4 gene encoding a neoxanthin synthase, which seems essential for de novo ABA biosynthesis during water stress. This leads to the interesting question on how ABA is then delivered to perception sites. In this respect, regulated transport has attracted renewed focus by the unexpected finding of a shoot-to-root translocation of ABA during drought response, and at the cellular level, by the identification of a beta-galactosidase that releases biologically active ABA from inactive ABA-glucose ester. Surprising candidate ABA receptors were also identified in the form of the Flowering Time Control Protein A (FCA) and the Chloroplastic Magnesium Protoporphyrin-IX Chelatase H subunit (CHLH) in chloroplast-nucleus communication, both of which have been shown to bind ABA in vitro. On the other hand, the protein(s) corresponding to the physiologically detectable cell-surface ABA receptor(s) is (are) still not known with certainty. Genetic and physiological studies based on the guard cell have reinforced the central importance of reversible phosphorylation in modulating rapid ABA responses. Sucrose Non-Fermenting Related Kinases (SnRK), Calcium-Dependent Protein Kinases (CDPK), Protein Phosphatases (PP) of the 2C and 2A classes figure as prominent regulators in this single-cell model. Identifying their direct in vivo targets of regulation, which may include H(+)-ATPases, ion channels, 14-3-3 proteins and transcription factors, will logically be the next major challenge. Emerging evidence also implicates ABA as a repressor of innate immune response, as hinted by the highly similar roster of genes elicited by certain pathogens and ABA. Undoubtedly, the most astonishing revelation is that ABA is not restricted to plants and mosses, but overwhelming evidence now indicates that it also exists in metazoans ranging from the most primitive to the most advance on the evolution scale (sponges to humans). In metazoans, ABA has healing properties, and plays protective roles against both environmental and pathogen related injuries. These cross-kingdom comparisons have shed light on the surprising ancient origin of ABA and its attendant mechanisms of signal transduction.


Asunto(s)
Ácido Abscísico/biosíntesis , Ácido Abscísico/fisiología , Fenómenos Fisiológicos de las Plantas , Aclimatación/fisiología , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Cloroplastos/fisiología , Sequías , Geranilgeranil-Difosfato Geranilgeraniltransferasa , Oxidorreductasas/genética , Transducción de Señal , Nicotiana/enzimología , Vicia faba/genética , Vicia faba/fisiología
8.
Plant Signal Behav ; 2(5): 368-9, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19704601

RESUMEN

Arabidopsis prolyl 4 hydroxylases (P4Hs) catalyze an important post-translational modification in plants, though the only information on their patterns of expression is solely based on Arabidopsis microarray analysis data. In addition, the expression patterns of plants P4Hs in response to hypoxia, anoxia and other abiotic stresses such as mechanical wounding have never been studied extensively, despite their central role in hypoxic response of several other organisms through the regulation of stability of the HIF-1alpha transcription factor, the global regulator of hypoxic response. The 13 putative Arabidopsis P4Hs are low abundance transcripts with differential patterns of expression in response to two hypoxic, 1.5% and 5% O(2), anoxic conditions and mechanical wounding. Hypoxia of 1.5% O(2) induced the expression of six At-P4Hs while hypoxia of 5% O(2) and anoxia induced the expression of three and two At-P4Hs, respectively. Moreover, 308 Arabidopsis genes including 25 transcription factors were identified in silico among the differentially expressed genes under hypoxia that contain proline hydroxylation motifs. These results suggest involvement of this post-translational modification in the processing of hypoxia induced proteins providing an alternative level of regulation for responses to oxygen deficiency conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...