Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 712-713: 149913, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640738

RESUMEN

Innate immunity of invertebrates offers potent antimicrobial peptides (AMPs) against drug-resistant infections. To identify new worm ß-hairpin AMPs, we explored the sequence diversity of proteins with a BRICHOS domain, which comprises worm AMP precursors. Strikingly, we discovered new BRICHOS AMPs not in worms, but in caecilians, the least studied clade of vertebrates. Two precursor proteins from Microcaecilia unicolor and Rhinatrema bivittatum resemble SP-C lung surfactants and bear worm AMP-like peptides at C-termini. The analysis of M. unicolor tissue transcriptomes shows that the AMP precursor is highly expressed in the lung along with regular SP-C, suggesting a different, protective function. The peptides form right-twisted ß-hairpins, change conformation upon lipid binding, and rapidly disrupt bacterial membranes. Both peptides exhibit broad-spectrum activity against multidrug-resistant ESKAPE pathogens with 1-4 µM MICs and remarkably low toxicity, giving 40-70-fold selectivity towards bacteria. These BRICHOS AMPs, previously unseen in vertebrates, reveal a novel lung innate immunity mechanism and offer a promising antibiotics template.


Asunto(s)
Péptidos Antimicrobianos , Pulmón , Animales , Secuencia de Aminoácidos , Anfibios/inmunología , Anfibios/metabolismo , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/metabolismo , Inmunidad Innata , Pulmón/inmunología , Pulmón/metabolismo , Pruebas de Sensibilidad Microbiana
2.
J Mater Chem B ; 11(25): 5794-5804, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37254915

RESUMEN

The need of the synthesis of a new generation of medicines aimed at combating bacteria and biofilms that cause various infections is a great urgency. There has been a gradual decrease in the conventional techniques of treatment with the use of antibiotics. Consequently, much effort has focused on the search for new methods and approaches to obtain antibacterial drugs and determine their rational use such that microorganisms do not acquire resistance. Although silver nanoparticles (AgNPs) and silver nanoclusters (AgNCs) have exhibited certain levels of effectiveness against multidrug-resistant bacteria and biofilms, there are very few simple, cheap and easy-to-scale methods to obtain AgNPs and AgNCs with well-desired characteristics. In this study, we carried out the one-pot synthesis of sols and gels containing AgNPs and AgNCs using only L-cysteine (CYS) or N-acetyl-L-cysteine (NAC), as bioreducing/capping/gel-forming agents, and different silver salts - nitrate, nitrite and acetate. HRTEM, SAED, EDX mapping, AFM, SEM, EDX, ICP-MS and FTIR spectroscopy analysis confirmed the formation of spherical/elliptical CYS-AgNP and NAC-AgNC particles consisting of AgNPs or AgNCs "core" and CYS/Ag+ or NAC/Ag+ complexes "shell" with mean average diameters of 10 and 5 nm, respectively. UV-Vis spectroscopy fixed the localized surface plasmon resonance (LSPR) at 390-420 nm for the CYS-AgNPs systems and LSPR absence for the NAC-AgNCs ones. DLS and nanoparticle tracking analysis (NTA) data indicated that the mean average diameter of the particles is about 80 nm for the CYS-AgNPs systems and 20 nm for the NAC-AgNCs ones. The Zeta potential measurements showed that the particles possess positive and negative charge values for CYS-AgNPs and NAC-AgNCs systems, respectively. The prepared materials demonstrated the high antibacterial activity against the most common types of bacteria at the MIC range of 10-100 µM, wherein the effect of the NAC-AgNCs systems is 2 times stronger than that of the CYS-AgNPs ones. Both systems are non-toxic or have low-toxicity at 300 µM for normal human cells: erytrocytes, fibroblasts and macrophages. Sols and hydrogels in the concentration range of 20-40 µM showed the complete inhibition of the formation of biofilms from Acinetobacter baumannii and Pseudomonas aeruginosa, which belong to the ESKAPE pathogenes group and represent the most serious problem in practical medicine. NAC-AgNCs systems were the most active. The simple strategy of the preparation of AgNP/AgNC-based sols and gels, along with their pronounced antibacterial and antibiofilm activity, could open new perspectives for its applications in medicine.


Asunto(s)
Acetilcisteína , Nanopartículas del Metal , Humanos , Acetilcisteína/farmacología , Hidrogeles/farmacología , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/química , Bacterias , Biopelículas
3.
Pharmaceutics ; 15(1)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36678918

RESUMEN

Antimicrobial peptides (AMPs) are acknowledged as a promising template for designing new antimicrobials. At the same time, existing toxicity issues and limitations in their pharmacokinetics make topical application one of the less complicated routes to put AMPs-based therapeutics into actual medical practice. Antiseptics are one of the common components for topical treatment potent against antibiotic-resistant pathogens but often with toxicity limitations of their own. Thus, the interaction of AMPs and antiseptics is an interesting topic that is also less explored than combined action of AMPs and antibiotics. Herein, we analyzed antibacterial, antibiofilm, and cytotoxic activity of combinations of both membranolytic and non-membranolytic AMPs with a number of antiseptic agents. Fractional concentration indices were used as a measure of possible effective concentration reduction achievable due to combined application. Cases of both synergistic and antagonistic interaction with certain antiseptics and surfactants were identified, and trends in the occurrence of these types of interaction were discussed. The data may be of use for AMP-based drug development and suggest that the topic requires further attention for successfully integrating AMPs-based products in the context of complex treatment. AMP/antiseptic combinations show promise for creating topical formulations with improved activity, lowered toxicity, and, presumably, decreased chances of inducing bacterial resistance. However, careful assessment is required to avoid AMP neutralization by certain antiseptic classes in either complex drug design or AMP application alongside other therapeutics/care products.

4.
Inorg Chem ; 60(22): 17008-17018, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34723488

RESUMEN

A simple one-step method is presented for fabricating inorganic nanosponges with a kaolinite [Al2Si2O5(OH)4] structure. The nanosponges were synthesized by the hydrothermal treatment of aluminosilicate gels in an acidic medium (pH = 2.6) at 220 °C without using organic cross-linking agents, such as cyclodextrin or polymers. The formation of the nanosponge morphology was confirmed by scanning electron microscopy, and the assignment of the synthesized aluminosilicates to the kaolinite group was confirmed by X-ray diffraction and infrared spectroscopy. The effect of the synthesis conditions, in particular, the nature (HCl, HF, NaOH, and H2O) and pH of the reaction medium (2.6, 7, and 12), as well as the duration of the synthesis (3, 6, and 12 days), on the morphology of aluminosilicates of the kaolinite group was studied. The sorption capacity of aluminosilicate nanosponges with respect to cationic (e.g., methylene blue) and anionic (e.g., azorubine) dyes in aqueous solutions was studied. The pH sensitivity of the surface ζ potential of the synthesized nanosponges was demonstrated. The dependence of the hemolytic activity (the ability to destroy erythrocytes) of aluminosilicate nanoparticles on the particle morphology (platy, spherical, and nanosponge) has been identified for the first time. Aluminosilicate nanosponges were not found to exhibit hemolytic activity. The prospects of using aluminosilicate nanosponges to prepare innovative functional materials for ecology and medicine applications, in particular, as matrices for drug delivery systems, were identified.

5.
Langmuir ; 37(42): 12356-12364, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34643405

RESUMEN

A quantitative and qualitative comparison of the antimicrobial and hemolytic activities of silver in various states, in the form of ions, nanoparticles, and bioconjugates with the antimicrobial protein lysozyme stabilized in an inert zeolite matrix, has been carried out. A synthetic zeolite with a ß structure was chosen as a zeolite matrix. Using the ion-exchange method, the method of chemical reduction, and treating the matrix with a silver hydrosol with specified characteristics, samples of zeolites with the same silver content in various forms (Ag+, Ag° - Ag°/Lyz) in the amounts of 0.8 and 5 wt % have been synthesized. The samples obtained were studied by a complex of physicochemical research methods: X-ray diffraction, UV absorption spectroscopy, low-temperature nitrogen adsorption, electron microscopy, and atomic absorption. Antimicrobial activity was assessed against antibiotic-resistant Gram-negative microbe (e.g., Escherichia coli ML-35, Pseudomonas aeruginosa 522/17 MDR, Klebsiella pneumoniae ESBL 344) and Gram-positive microbe (e.g., Staphylococcus aureus 1399/17). The hemolytic activity in relation to human erythrocytes was estimated. The results obtained showed significant antimicrobial activity with a simultaneously high hemolytic activity of ionic silver. Silver nanoparticles have a lower level of antimicrobial activity and toxicity. Bioconjugates of silver nanoparticles and lysozyme showed an optimal combination of antimicrobial properties and lack of hemolytic activity.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Zeolitas , Antibacterianos/toxicidad , Antiinfecciosos/farmacología , Humanos , Iones , Pruebas de Sensibilidad Microbiana , Plata
6.
Front Microbiol ; 12: 750556, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975782

RESUMEN

Silver nanoparticles (AgNPs) and antimicrobial peptides or proteins (AMPs/APs) are both considered as promising platforms for the development of novel therapeutic agents effective against the growing number of drug-resistant pathogens. The observed synergy of their antibacterial activity suggested the prospect of introducing antimicrobial peptides or small antimicrobial proteins into the gelatinized coating of AgNPs. Conjugates with protegrin-1, indolicidin, protamine, histones, and lysozyme were comparatively tested for their antibacterial properties and compared with unconjugated nanoparticles and antimicrobial polypeptides alone. Their toxic effects were similarly tested against both normal eukaryotic cells (human erythrocytes, peripheral blood mononuclear cells, neutrophils, and dermal fibroblasts) and tumor cells (human erythromyeloid leukemia K562 and human histiocytic lymphoma U937 cell lines). The AMPs/APs retained their ability to enhance the antibacterial activity of AgNPs against both Gram-positive and Gram-negative bacteria, including drug-resistant strains, when conjugated to the AgNP surface. The small, membranolytic protegrin-1 was the most efficient, suggesting that a short, rigid structure is not a limiting factor despite the constraints imposed by binding to the nanoparticle. Some of the conjugated AMPs/APs clearly affected the ability of nanoparticle to permeabilize the outer membrane of Escherichia coli, but none of the conjugated AgNPs acquired the capacity to permeabilize its cytoplasmic membrane, regardless of the membranolytic potency of the bound polypeptide. Low hemolytic activity was also found for all AgNP-AMP/AP conjugates, regardless of the hemolytic activity of the free polypeptides, making conjugation a promising strategy not only to enhance their antimicrobial potential but also to effectively reduce the toxicity of membranolytic AMPs. The observation that metabolic processes and O2 consumption in bacteria were efficiently inhibited by all forms of AgNPs is the most likely explanation for their rapid and bactericidal action. AMP-dependent properties in the activity pattern of various conjugates toward eukaryotic cells suggest that immunomodulatory, wound-healing, and other effects of the polypeptides are at least partially transferred to the nanoparticles, so that functionalization of AgNPs may have effects beyond just modulation of direct antibacterial activity. In addition, some conjugated nanoparticles are selectively toxic to tumor cells. However, caution is required as not all modulatory effects are necessarily beneficial to normal host cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA