Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37947767

RESUMEN

BACKGROUND: Sensors that are sensitive to volatile organic compounds, and thus able to monitor the conservation state of food, are precious because they work non-destructively and allow avoiding direct contact with the food, ensuring hygienic conditions. In particular, the monitoring of rancidity would solve a widespread issue in food storage. RESULTS: The sensor discussed here is produced utilizing a novel three-dimensional arrangement of graphene, which is grown on a crystalline silicon carbide wafer previously porousified by chemical etching. This approach allows a very high surface-to-volume ratio. Furthermore, the structure of the sensor surface features a large number of edges, dangling bounds, and active sites, which make the sensor, on a chemically robust skeleton, chemically active, particularly to hydrogenated molecules. The interaction of the sensor with such compounds is read out by measuring the sensor resistance in a four-wire configuration. The sensor performance has been assessed on three hazelnut samples: sound, spoiled, and stink bug hazelnuts. A resistance variation of about ∆R = 0.13 ± 0.02 Ω between sound and damaged hazelnuts has been detected. CONCLUSIONS: Our measurements confirm the ability of the sensor to discriminate between sound and damaged hazelnuts. The sensor signal is stable for days, providing the possibility to use this sensor for the monitoring of the storage state of fats and foods in general. © 2023 Society of Chemical Industry.

2.
ACS Appl Eng Mater ; 1(7): 1937-1945, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37533604

RESUMEN

Copper (Cu) is the electrical conductor of choice in many categories of electrical wiring, with household and building installation being the major market of this metal. This work demonstrates the coating of Cu wires-with diameters relevant for low-voltage (LV) applications-with graphene. The chemical vapor deposition (CVD) coating process is rapid, safe, scalable, and industrially compatible. Graphene-coated Cu wires display good oxidation resistance and increased electrical conductivity (up to 1% immediately after coating and up to 3% after 24 months), allowing for wire diameter reduction and thus significant savings in wire production costs. Combined spectroscopic and diffraction analysis indicates that the conductivity increase is due to a change in Cu crystallinity induced by the coating process conditions, while electrical testing of aged wires shows that graphene plays a major role in maintaining improved electrical performances over long periods of time. Finally, graphene coating of Cu wires using an ambient-pressure roll-to-roll (R2R) CVD reactor is demonstrated. This enables the in-line production of graphene-coated metallic wires as required for industrial scale-up.

3.
Cancers (Basel) ; 12(5)2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344838

RESUMEN

Negative or positive HPV-associated Head and Neck Squamous Cell Carcinomas (HNSCCs) are high recurrence neoplasms usually resulting in a poor prognosis, mainly due to metastasis formation. Despite the low overall patient survival rate and the severe side effects, the treatment of choice is still cisplatin-based chemotherapy. Here, we report a straightforward protocol for the production of high throughput 3D models of negative or positive HPV-associated HNSCCs, together with their employment in the therapeutic evaluation of gold ultrasmall-in-nano architectures comprising an endogenously-activatable cisplatin prodrug. Beyond enhancing the biosafety of cisplatin, our approach paves the way for the establishment of synergistic co-therapies for HNSCCs based on excretable noble metals.

4.
ACS Appl Bio Mater ; 2(10): 4464-4470, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-35021406

RESUMEN

Effective excretion of nanostructured noble metals is still one of the most challenging bottlenecks for their employment in clinical practice. Besides the persistence issue, the clinical translation of inorganic nanomaterials is also affected by a bewildering lack of investigations regarding their quantitative biokinetics. Here, we have quantitatively correlated the chemical nature of the three most interesting noble metals for biomedical applications to their biosafety and biokinetics in, respectively, zebrafish and murine models. Gold, silver, and platinum ultrasmall-in-nano architectures with comparable size elicit, after intravenous administration, different excretion pathways depending on their intrinsic metallic nature. Understanding the in vivo fate of noble metal nanoparticles is a significant breakthrough to unlock their clinical employment for the establishment of treatments for neoplasms, infectious diseases, and neurological disorders.

5.
Artículo en Inglés | MEDLINE | ID: mdl-30349817

RESUMEN

Nanomaterials have attracted increasing interest for their potentiality to revolutionize the diagnosis and treatment of many diseases, especially neoplasms. Interestingly, there is a huge imbalance between the number of proposed nanoplatforms and the few ones approved for clinical applications. This disequilibrium affects in particular noble metal nanoparticles (NPs), that present no-approved platform and very few candidates in clinical trials because of the issue of persistence. In this perspective, we discuss if nanomedicine is generally keeping its promises with a focus on the approach that could fill the gap between NPs and oncology in the next future: the ultrasmall-in-nano.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...