Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(10): 12882-12894, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36854172

RESUMEN

Controlled photoreduction of Pt(IV) prodrugs is a challenging task due to the possibility of targeted light-controlled activation of anticancer agents without affecting healthy tissues. Also, a conjugation of photosensitizers and clinically used platinum drugs into one Pt(IV) prodrug allows combining photodynamic therapy and chemotherapy approaches into one molecule. Herein, we designed the cisplatin-based Pt(IV) prodrug Riboplatin with tetraacetylriboflavin in the axial position. A novel Pt(IV) prodrug is able to act both as a photodynamic therapy (PDT) agent through the conversion of ground-state 3O2 to excited-state 1O2 and as an agent of photoactivated chemotherapy (PACT) through releasing of cisplatin under gentle blue light irradiation, without the requirement of a reducing agent. The light-induced behavior of Riboplatin was investigated using an electrochemical sensor in MCF-7 tumor spheroids. Photocontrolled cisplatin release and ROS generation were detected electrochemically in real time. This appears to be the first confirmation of simultaneous photoactivated release of anticancer drug cisplatin and ROS from a dual-action Pt(IV) prodrug observed from the inside of living tumor spheroids.


Asunto(s)
Antineoplásicos , Profármacos , Cisplatino/farmacología , Cisplatino/química , Profármacos/farmacología , Profármacos/química , Especies Reactivas de Oxígeno , Antineoplásicos/farmacología , Antineoplásicos/química , Platino (Metal)/química , Línea Celular Tumoral
2.
Inorg Chem ; 61(37): 14705-14717, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36047922

RESUMEN

We report herein a Pt(IV) prodrug with metronidazole in axial positions Pt-Mnz. The nitroaromatic axial ligand was conjugated with a cisplatin scaffold to irreversibly reduce under hypoxic conditions, thereby retaining the Pt(IV) prodrug in the area of hypoxia. X-ray near-edge adsorption spectroscopy (XANES) on dried drug-preincubated tumor cell samples revealed a gradual release of cisplatin from the Pt-Mnz prodrug instead of rapid intracellular degradation. The ability of the prodrug to penetrate into three-dimensional (3D) spheroid cellular cultures was evaluated by a novel electrochemical assay via a platinum-coated carbon nanoelectrode, capable of single-cell measurements. Using a unique technique of electrochemical measurements in single tumor spheroids, we were able to both detect the real-time response of the axial ligand to hypoxia and establish the depth of penetration of the drug into the tumor model.


Asunto(s)
Antineoplásicos , Profármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Carbono , Línea Celular Tumoral , Cisplatino/química , Humanos , Hipoxia , Ligandos , Metronidazol/farmacología , Platino (Metal)/química , Profármacos/química , Profármacos/farmacología
3.
Nanomaterials (Basel) ; 12(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35808003

RESUMEN

Mitochondrial uncoupler 2,4-dinitrophenol (2,4-DNP) is a promising antidiabetic and antiobesity agent. Its clinical use is limited by a narrow dynamic range and accumulation in non-target sensitive organs, which results in whole-body toxicity. A liposomal formulation could enable the mentioned drawbacks to be overcome and simplify the liver-targeted delivery and sustained release of 2,4-DNP. We synthesized 2,4-DNP esters with carboxylic acids of various lipophilic degrees using carboxylic acid chloride and then loaded them into liposomes. We demonstrated the effective increase in the entrapment of 2,4-DNP into liposomes when esters were used. Here, we examined the dependence of the sustained release of 2,4-DNP from liposomes on the lipid composition and LogPoct of the ester. We posit that the optimal chain length of the ester should be close to the palmitic acid and the lipid membrane should be composed of phospholipids with a certain phase transition point depending on the desired release rate. The increased effect of the ATP synthesis inhibition of the liposomal forms of caproic and palmitic acid esters compared to free molecules in liver hepatocytes was demonstrated. The liposomes' stability could well be responsible for this result. This work demonstrates promising possibilities for the liver-targeted delivery of the 2,4-DNP esters with carboxylic acids loaded into liposomes for ATP synthesis inhibition.

4.
J Med Chem ; 65(12): 8227-8244, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35675651

RESUMEN

We report herein the design, synthesis, and biological investigation of a series of novel Pt(IV) prodrugs with non-steroidal anti-inflammatory drugs naproxen, diclofenac, and flurbiprofen, as well as these with stearic acid in the axial position. Six Pt(IV) prodrugs 5-10 were designed, which showed superior antiproliferative activity compared to cisplatin as well as an ability to overcome tumor cell line resistance to cisplatin. By tuning the drug lipophilicity via variation of the axial ligands, the most potent Pt(IV) prodrug 7 was obtained, with an enhanced cellular accumulation of up to 153-fold that of cisplatin and nanomolar cytotoxicity both in 2D and 3D cell cultures. Pt2+ species were detected at different depths of MCF-7 spheroids after incubation with Pt(IV) prodrugs using a Pt-coated carbon nanoelectrode. Cisplatin accumulation in vivo in the murine mammary EMT6 tumor tissue of BALB/c mice after Pt(IV) prodrug injection was proved electrochemically as well. The drug tolerance study on BALB/c mice showed good tolerance of 7 in doses up to 8 mg/kg.


Asunto(s)
Antiinflamatorios no Esteroideos , Antineoplásicos , Compuestos de Platino , Profármacos , Animales , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , Diseño de Fármacos , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Compuestos de Platino/farmacología , Profármacos/farmacología
5.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112183, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34741909

RESUMEN

To date, significant progress has been achieved in the development of biomedical superelastic Ti-based alloys with high mechanical properties. In view of the high probability of implant-associated infection, an urgent task is to impart bactericidal properties to the material. Herein, advanced superelastic Ti-18Zr-15Nb alloys were surface-etched in a piranha solution, and then Ag nanoparticles were deposited on their surface using a polyol process. This led to the formation of a porous surface layer with a thickness of approximately 100 nm and pore size of less than 20 nm, filled with metallic Ag nanoparticles with an average size of 14 nm. The surface-modified samples showed superior antibacterial activity against E.coli cells. The enhanced bactericidal efficiency is explained by the combination of a higher rate of Ag+ ions release and direct contact of E.coli cells with Ag nanoparticles.


Asunto(s)
Nanopartículas del Metal , Aleaciones/farmacología , Antibacterianos/farmacología , Materiales Biocompatibles , Ensayo de Materiales , Plata/farmacología , Propiedades de Superficie , Titanio/farmacología
6.
J Control Release ; 330: 244-256, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33333122

RESUMEN

Accumulation of liposomal drugs into human tumors has substantial variability influencing the probability of positive response to the therapy. Therefore, it becomes very important to identify the eligibility of patients for various treatment options. The existing strategies of tumor stratification using companion diagnostics are based on the assumption that the initial and subsequent doses of nanoparticles (NP) behave in a sufficiently similar manner to enable a valuable prognosis. Here, we use a combination of in vivo imaging techniques to validate the applicability of magnetic liposomes (ML) as a reliable tool to predict whether or not the tumor would respond to nanomedicine therapy. The results demonstrated that liposome biodistribution, interactions with immune cells, and extravasation behavior in tumors were not affected by the pretreatment with liposomes 24 h prior to the repeat dosing. Co-administration of liposomal doxorubicin (DXR) and liposomes loaded with maghemite NP resulted in a high colocalization rate between two nanomedicines in tumors suggesting that neither contrast agent, nor chemotherapeutics altered biodistribution of liposomes. Based on magnetic resonance imaging of 4T1 tumors performed before and 6 h after ML treatment, animals were classified into high and low accumulation subgroups. Higher ML deposition in tumors was associated with a reduction in lesion size and enhanced survival in animals treated with liposomal DXR, but not with DXR alone. Given that liposomes are the most numerous class of clinically approved nanomedicines the development of safe and cost-effective liposomal companion diagnostic suitable for non-invasive imaging is of paramount importance for improving the efficacy of cancer therapy.


Asunto(s)
Liposomas , Neoplasias , Animales , Doxorrubicina , Humanos , Microscopía Intravital , Nanomedicina , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Distribución Tisular
7.
J Med Chem ; 63(21): 13031-13063, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-32985193

RESUMEN

A series of 73 ligands and 73 of their Cu+2 and Cu+1 copper complexes with different geometries, oxidation states of the metal, and redox activities were synthesized and characterized. The aim of the study was to establish the structure-activity relationship within a series of analogues with different substituents at the N(3) position, which govern the redox potentials of the Cu+2/Cu+1 redox couples, ROS generation ability, and intracellular accumulation. Possible cytotoxicity mechanisms, such as DNA damage, DNA intercalation, telomerase inhibition, and apoptosis induction, have been investigated. ROS formation in MCF-7 cells and three-dimensional (3D) spheroids was proven using the Pt-nanoelectrode. Drug accumulation and ROS formation at 40-60 µm spheroid depths were found to be the key factors for the drug efficacy in the 3D tumor model, governed by the Cu+2/Cu+1 redox potential. A nontoxic in vivo single-dose evaluation for two binuclear mixed-valence Cu+1/Cu+2 redox-active coordination compounds, 72k and 61k, was conducted.


Asunto(s)
Complejos de Coordinación/química , Cobre/química , Imidazoles/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Complejos de Coordinación/metabolismo , Complejos de Coordinación/farmacología , Cristalografía por Rayos X , Daño del ADN/efectos de los fármacos , Humanos , Ligandos , Células MCF-7 , Modelos Biológicos , Conformación Molecular , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Esferoides Celulares/efectos de los fármacos , Relación Estructura-Actividad , Telomerasa/antagonistas & inhibidores , Telomerasa/metabolismo
8.
Sci Rep ; 10(1): 4745, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179787

RESUMEN

Remote nano-magneto-mechanical actuation of magnetic nanoparticles (MNPs) by non-heating extremely low frequency magnetic field (ELF MF) is explored as a tool for non-invasive modification of bionanomaterials in pharmaceutical and medical applications. Here we study the effects of ELF MF (30-160 Hz, 8-120 kA/m) on the activity and release of a model enzyme, superoxide dismutase 1 (SOD1) immobilized by polyion coupling on dispersed MNPs aggregates coated with poly(L-lysine)-block-poly(ethylene glycol) block copolymer (s-MNPs). Such fields do not cause any considerable heating of MNPs but promote their rotating-oscillating mechanical motion that produces mechanical forces and deformations in adjacent materials. We observed the changes in the catalytic activity of immobilized SOD1 as well as its release from the s-MNPs/SOD1 polyion complex upon application of the ELF MF for 5 to 15 min. At longer exposures (25 min) the s-MNPs/SOD1 dispersion destabilizes. The bell-shaped effect of the field frequency with maximum at f = 50 Hz and saturation effect of field strength (between 30 kA/m and 120 kA/m at f = 50 Hz) are reported and explained. The findings are significant as one early indication of the nano-magneto-mechanical disruption by ELF MF of cooperative polyion complexes that are widely used for design of current functional healthcare bionanomaterials.


Asunto(s)
Enzimas Inmovilizadas , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Hierro , Nanoestructuras , Biofarmacia , Polietilenglicoles , Polímeros , Superóxido Dismutasa-1/metabolismo
9.
ACS Nano ; 13(11): 12599-12612, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31609576

RESUMEN

Liposomes are the most extensively used nanocarriers in cancer therapy. Despite the advantages these vehicles provide over free drugs, there are still limitations with regards to the efficiency of liposomes delivery to tumors and off-target accumulation. A better understanding of nanodrugs extravasation mechanisms in different tumor types and normal vessels is needed to improve their antitumor activity. We used intravital microscopy to track for fluorescent liposomes behavior in xenograft tumor models (murine breast cancer 4T1 and melanoma B16, human prostate cancer 22Rv1) and normal skin and identified two distinct extravasation patterns. Microleakage, a local perivascular nanoparticle deposition, was found both in malignant and healthy tissues. This type of liposomes leakage does not provide access to tumor cells and is presumably responsible for drug deposition in normal tissues. In contrast, macroleakage penetrated deep into tissues and localized predominantly on the tumor-host interface. Although neutrophils did not uptake liposomes, their extravasation appeared to initiate both micro- and macroleakages. Based on neutrophils and liposomes extravasation dynamics, we hypothesized that microleakage and macroleakage are subsequent steps of the extravasation process corresponding to liposomes transport through endothelial and subendothelial barriers. Of note, extravasation spots were detected more often in the proximity of neutrophils, and across studied tumor types, neutrophils counts correlated with leakage frequencies. Reduced liposomes accumulation in 4T1 tumors upon Ly6G depletion further corroborated neutrophils role in nanoparticles delivery. Elucidating liposomes extravasation routes has a potential to help improve existing strategies and develop effective nanodrugs for cancer therapy.


Asunto(s)
Antineoplásicos , Permeabilidad Capilar/efectos de los fármacos , Liposomas , Nanopartículas , Neutrófilos , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular , Línea Celular Tumoral , Femenino , Humanos , Microscopía Intravital , Liposomas/química , Liposomas/farmacocinética , Liposomas/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nanopartículas/química , Nanopartículas/metabolismo , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Neutrófilos/fisiología , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Nanomedicine ; 21: 102065, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31349089

RESUMEN

This work presents direct evidence of disordering of liposomal membranes by magnetic nanoparticles during their exposures to non-heating alternating Extremely Low Frequency Magnetic Field (ELF MF). Changes in the lipid membrane structure were demonstrated by the Attenuated total reflection Fourier Transform Infrared and fluorescence spectroscopy. Specifically, about 50% of hydrophobic chains became highly mobile under the action of ELF MF. Magnetic field-induced increase in the membrane fluidity was accompanied by an increase in membrane permeability and release of solutes entrapped in liposomes. The effect of ELF MF on the membrane fluidity was greater in case of 70 × 12 nm magnetite nanorods adsorbed on the liposomes surface compared to liposomes with ~7 nm spherical MNPs embedded within lipid membranes. A physical model of this process explaining experimental data is suggested. The obtained results open new horizons for the development of systems for triggered drug release without dangerous heating and overheating of tissues.


Asunto(s)
Campos Magnéticos , Modelos Químicos , Nanotubos/química , Liposomas , Fluidez de la Membrana , Permeabilidad
11.
J Colloid Interface Sci ; 552: 689-700, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31176052

RESUMEN

HYPOTHESIS: Magnetic liposomes are shown to release the entrapped dye once modulated by low frequency AC MF. The mechanism and effectiveness of MF application should depend on lipid composition, magnetic nanoparticles (MNPs) properties, temperature and field parameters. EXPERIMENTS: The study was performed using liposomes of various lipid composition and embedded hydrophobic MNPs. The liposomes structural changes were studied by the transmission electron microscopy (TEM) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and the leakage was monitored by the fluorescent dye release. FINDINGS: Magnetic liposomes exposure to the AC MF resulted in the clustering of the MNPs in the membranes and disruption of the lipid packaging. Addition of cholesterol diminished the dye release from the saturated lipid-based liposomes. Replacement of the saturated lipid for unsaturated one also decreased the dye release. The dye release depended on the strength, but not the frequency of the field. Thus, the oscillating motion of MNPs in AC MF ruptures the gel phase membranes of saturated lipids. As the temperature increases the disruption also increases. In the liquid crystalline membranes formed by unsaturated lipids the deformations and defects created by mechanical motion of the MNPs are more likely to heal and results in decreased release.


Asunto(s)
Compuestos Férricos/química , Colorantes Fluorescentes/química , Lípidos/química , Nanopartículas de Magnetita/química , Liberación de Fármacos , Compuestos Férricos/síntesis química , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/síntesis química , Liposomas/química , Campos Magnéticos , Tamaño de la Partícula , Propiedades de Superficie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...