Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(4)2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36831274

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known for its multifunctionality in several pathogenic bacteria. Our previously reported data suggest that the GAPDH homologue of Francisella tularensis, GapA, might also be involved in other processes beyond metabolism. In the present study, we explored GapA's potential implication in pathogenic processes at the host cell level. Using immunoelectron microscopy, we demonstrated the localization of this bacterial protein inside infected macrophages and its peripheral distribution in bacterial cells increasing with infection time. A quantitative proteomic approach based on stable isotope labeling of amino acids in cell culture (SILAC) combined with pull-down assay enabled the identification of several of GapA's potential interacting partners within the host cell proteome. Two of these partners were further confirmed by alternative methods. We also investigated the impact of gapA deletion on the transcription of selected cytokine genes and the activation of the main signaling pathways. Our results show that ∆gapA-induced transcription of genes encoding several cytokines whose expressions were not affected in cells infected with a fully virulent wild-type strain. That might be caused, at least in part, by the detected differences in ERK/MAPK signaling activation. The experimental observations together demonstrate that the F. tularensis GAPDH homologue is directly implicated in multiple host cellular processes and, thereby, that it participates in several molecular mechanisms of pathogenesis.


Asunto(s)
Francisella tularensis , Francisella tularensis/genética , Francisella tularensis/metabolismo , Citocinas/metabolismo , Proteómica , Virulencia/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Expresión Génica
2.
Pharmaceutics ; 14(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36015338

RESUMEN

IL-6 signaling is involved in the pathogenesis of a number of serious diseases, including chronic inflammation and cancer. Targeting of IL-6 receptor (IL-6R) by small molecules is therefore an intensively studied strategy in cancer treatment. We describe the design, synthesis, and characteristics of two new bis-pentamethinium salts 5 and 6 (meta and para) bearing indole moieties. Molecular docking studies showed that both compounds have the potential to bind IL-6R (free energy of binding -9.5 and -8.1 kcal/mol). The interaction with IL-6R was confirmed using microscale thermophoresis analyses, which revealed that both compounds had strong affinity for the IL-6R (experimentally determined dissociation constants 26.5 ± 2.5 nM and 304 ± 27.6 nM, respectively). In addition, both compounds were cytotoxic for a broad spectrum of cancer cell lines in micromolar concentrations, most likely due to their accumulation in mitochondria and inhibition of mitochondrial respiration. In summary, the structure motif of bis-pentamethinium salts represents a promising starting point for the design of novel multitargeting compounds with the potential to inhibit IL-6 signaling and simultaneously target mitochondrial metabolism in cancer cells.

4.
Autophagy ; 18(10): 2409-2426, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35258392

RESUMEN

Mitochondrial oxidative phosphorylation (OXPHOS) generates ATP, but OXPHOS also supports biosynthesis during proliferation. In contrast, the role of OXPHOS during quiescence, beyond ATP production, is not well understood. Using mouse models of inducible OXPHOS deficiency in all cell types or specifically in the vascular endothelium that negligibly relies on OXPHOS-derived ATP, we show that selectively during quiescence OXPHOS provides oxidative stress resistance by supporting macroautophagy/autophagy. Mechanistically, OXPHOS constitutively generates low levels of endogenous ROS that induce autophagy via attenuation of ATG4B activity, which provides protection from ROS insult. Physiologically, the OXPHOS-autophagy system (i) protects healthy tissue from toxicity of ROS-based anticancer therapy, and (ii) provides ROS resistance in the endothelium, ameliorating systemic LPS-induced inflammation as well as inflammatory bowel disease. Hence, cells acquired mitochondria during evolution to profit from oxidative metabolism, but also built in an autophagy-based ROS-induced protective mechanism to guard against oxidative stress associated with OXPHOS function during quiescence.Abbreviations: AMPK: AMP-activated protein kinase; AOX: alternative oxidase; Baf A: bafilomycin A1; CI, respiratory complexes I; DCF-DA: 2',7'-dichlordihydrofluorescein diacetate; DHE: dihydroethidium; DSS: dextran sodium sulfate; ΔΨmi: mitochondrial inner membrane potential; EdU: 5-ethynyl-2'-deoxyuridine; ETC: electron transport chain; FA: formaldehyde; HUVEC; human umbilical cord endothelial cells; IBD: inflammatory bowel disease; LC3B: microtubule associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; mtDNA: mitochondrial DNA; NAC: N-acetyl cysteine; OXPHOS: oxidative phosphorylation; PCs: proliferating cells; PE: phosphatidylethanolamine; PEITC: phenethyl isothiocyanate; QCs: quiescent cells; ROS: reactive oxygen species; PLA2: phospholipase A2, WB: western blot.


Asunto(s)
Autofagia , Enfermedades Inflamatorias del Intestino , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Cisteína/metabolismo , ADN Mitocondrial/metabolismo , Dextranos/metabolismo , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Formaldehído/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Isotiocianatos , Lipopolisacáridos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Fosfatidiletanolaminas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Respiración , Sirolimus
5.
Histochem Cell Biol ; 157(2): 153-172, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34837514

RESUMEN

The incidence of cutaneous malignant melanoma is increasing worldwide. While the treatment of initial stages of the disease is simple, the advanced disease frequently remains fatal despite novel therapeutic options . This requires identification of novel therapeutic targets in melanoma. Similarly to other types of tumours, the cancer microenvironment plays a prominent role and determines the biological properties of melanoma. Importantly, melanoma cell-produced exosomes represent an important tool of intercellular communication within this cancer ecosystem. We have focused on potential differences in the activity of exosomes produced by melanoma cells towards melanoma-associated fibroblasts and normal dermal fibroblasts. Cancer-associated fibroblasts were activated by the melanoma cell-produced exosomes significantly more than their normal counterparts, as assessed by increased transcription of genes for inflammation-supporting cytokines and chemokines, namely IL-6 or IL-8. We have observed that the response is dependent on the duration of the stimulus via exosomes and also on the quantity of exosomes. Our study demonstrates that melanoma-produced exosomes significantly stimulate the tumour-promoting proinflammatory activity of cancer-associated fibroblasts. This may represent a potential new target of oncologic therapy .


Asunto(s)
Exosomas/metabolismo , Fibroblastos/metabolismo , Melanoma Experimental/metabolismo , Fibroblastos/patología , Humanos , Melanoma Experimental/patología , Células Tumorales Cultivadas
6.
Front Microbiol ; 12: 748706, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721352

RESUMEN

Francisella tularensis is known to release unusually shaped tubular outer membrane vesicles (OMV) containing a number of previously identified virulence factors and immunomodulatory proteins. In this study, we present that OMV isolated from the F. tularensis subsp. holarctica strain FSC200 enter readily into primary bone marrow-derived macrophages (BMDM) and seem to reside in structures resembling late endosomes in the later intervals. The isolated OMV enter BMDM generally via macropinocytosis and clathrin-dependent endocytosis, with a minor role played by lipid raft-dependent endocytosis. OMVs proved to be non-toxic and had no negative impact on the viability of BMDM. Unlike the parent bacterium itself, isolated OMV induced massive and dose-dependent proinflammatory responses in BMDM. Using transmission electron microscopy, we also evaluated OMV release from the bacterial surface during several stages of the interaction of Francisella with BMDM. During adherence and the early phase of the uptake of bacteria, we observed numerous tubular OMV-like protrusions bulging from the bacteria in close proximity to the macrophage plasma membrane. This suggests a possible role of OMV in the entry of bacteria into host cells. On the contrary, the OMV release from the bacterial surface during its cytosolic phase was negligible. We propose that OMV play some role in the extracellular phase of the interaction of Francisella with the host and that they are involved in the entry mechanism of the bacteria into macrophages.

7.
Oncogene ; 40(14): 2539-2552, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33686239

RESUMEN

Pancreatic cancer is one of the deadliest forms of cancer, which is attributed to lack of effective treatment options and drug resistance. Mitochondrial inhibitors have emerged as a promising class of anticancer drugs, and several inhibitors of the electron transport chain (ETC) are being clinically evaluated. We hypothesized that resistance to ETC inhibitors from the biguanide class could be induced by inactivation of SMAD4, an important tumor suppressor involved in transforming growth factor ß (TGFß) signaling, and associated with altered mitochondrial activity. Here we show that, paradoxically, both TGFß-treatment and the loss of SMAD4, a downstream member of TGFß signaling cascade, induce resistance to biguanides, decrease mitochondrial respiration, and fragment the mitochondrial network. Mechanistically, the resistance of SMAD4-deficient cells is mediated by increased mitophagic flux driven by MAPK/ERK signaling, whereas TGFß-induced resistance is autophagy-independent and linked to epithelial-to-mesenchymal transition (EMT). Interestingly, mitochondria-targeted tamoxifen, a complex I inhibitor under clinical trial, overcomes resistance mediated by SMAD4-deficiency or TGFß signaling. Our data point to differential mechanisms underlying the resistance to treatment in PDAC arising from TGFß signaling and SMAD4 loss, respectively. The findings will help the development of mitochondria-targeted therapy for pancreatic cancer patients with SMAD4 as a plausible predictive marker.


Asunto(s)
Neoplasias Pancreáticas/metabolismo , Proteína Smad4/metabolismo , Humanos , Mitofagia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...