Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(8): e0060423, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37555661

RESUMEN

Viruses have evolved diverse strategies to evade the host innate immune response and promote infection. The retinoic acid-inducible gene I (RIG-I)-like receptors RIG-I and MDA5 are antiviral factors that sense viral RNA and trigger downstream signal via mitochondrial antiviral-signaling protein (MAVS) to activate type I interferon expression. 14-3-3ε is a key component of the RIG-I translocon complex that interacts with MAVS at the mitochondrial membrane; however, the exact role of 14-3-3ε in this pathway is not well understood. In this study, we demonstrate that 14-3-3ε is a direct substrate of both the poliovirus and coxsackievirus B3 (CVB3) 3C proteases (3Cpro) and that it is cleaved at Q236↓G237, resulting in the generation of N- and C-terminal fragments of 27.0 and 2.1 kDa, respectively. While the exogenous expression of wild-type 14-3-3ε enhances IFNB mRNA production during poly(I:C) stimulation, expression of the truncated N-terminal fragment does not. The N-terminal 14-3-3ε fragment does not interact with RIG-I in co-immunoprecipitation assays, nor can it facilitate RIG-I translocation to the mitochondria. Probing the intrinsically disordered C-terminal region identifies key residues responsible for the interaction between 14-3-3ε and RIG-I. Finally, overexpression of the N-terminal fragment promotes CVB3 infection in mammalian cells. The strategic enterovirus 3Cpro-mediated cleavage of 14-3-3ε antagonizes RIG-I signaling by disrupting critical interactions within the RIG-I translocon complex, thus contributing to evasion of the host antiviral response. IMPORTANCE Host antiviral factors work to sense virus infection through various mechanisms, including a complex signaling pathway known as the retinoic acid-inducible gene I (RIG-I)-like receptor pathway. This pathway drives the production of antiviral molecules known as interferons, which are necessary to establish an antiviral state in the cellular environment. Key to this antiviral signaling pathway is the small chaperone protein 14-3-3ε, which facilitates the delivery of a viral sensor protein, RIG-I, to the mitochondria. In this study, we show that the enteroviral 3C protease cleaves 14-3-3ε during infection, rendering it incapable of facilitating this antiviral response. We also find that the resulting N-terminal cleavage fragment dampens RIG-I signaling and promotes virus infection. Our findings reveal a novel viral strategy that restricts the antiviral host response and provides insights into the mechanisms underlying 14-3-3ε function in RIG-I antiviral signaling.


Asunto(s)
Infecciones por Picornaviridae , Picornaviridae , Animales , Cisteína Endopeptidasas/metabolismo , Proteína 58 DEAD Box/metabolismo , Inmunidad Innata , Mamíferos , Péptido Hidrolasas/metabolismo , Picornaviridae/metabolismo , Transducción de Señal , Tretinoina , Proteínas Virales/metabolismo , Infecciones por Picornaviridae/inmunología , Infecciones por Picornaviridae/virología , Proteasas Virales 3C
2.
PLoS Pathog ; 18(12): e1010598, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36455064

RESUMEN

Viruses have evolved mechanisms to modulate cellular pathways to facilitate infection. One such pathway is the formation of stress granules (SG), which are ribonucleoprotein complexes that assemble during translation inhibition following cellular stress. Inhibition of SG assembly has been observed under numerous virus infections across species, suggesting a conserved fundamental viral strategy. However, the significance of SG modulation during virus infection is not fully understood. The 1A protein encoded by the model dicistrovirus, Cricket paralysis virus (CrPV), is a multifunctional protein that can bind to and degrade Ago-2 in an E3 ubiquitin ligase-dependent manner to block the antiviral RNA interference pathway and inhibit SG formation. Moreover, the R146 residue of 1A is necessary for SG inhibition and CrPV infection in both Drosophila S2 cells and adult flies. Here, we uncoupled CrPV-1A's functions and provide insight into its underlying mechanism for SG inhibition. CrPV-1A mediated inhibition of SGs requires the E3 ubiquitin-ligase binding domain and the R146 residue, but not the Ago-2 binding domain. Wild-type but not mutant CrPV-1A R146A localizes to the nuclear membrane which correlates with nuclear enrichment of poly(A)+ RNA. Transcriptome changes in CrPV-infected cells are dependent on the R146 residue. Finally, Nup358/RanBP2 is targeted and degraded in CrPV-infected cells in an R146-dependent manner and the depletion of Nup358 blocks SG formation. We propose that CrPV utilizes a multiprong strategy whereby the CrPV-1A protein interferes with a nuclear event that contributes to SG inhibition in order to promote infection.


Asunto(s)
Proteínas Virales , Replicación Viral , Animales , Proteínas Virales/metabolismo , Gránulos de Estrés , Línea Celular , Drosophila , Gránulos Citoplasmáticos/metabolismo
3.
ACS Appl Mater Interfaces ; 14(1): 49-56, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34978405

RESUMEN

The development of low-cost, non-toxic, scalable antimicrobial textiles is needed to address the spread of deadly pathogens. Here, we report a polysiloxane textile coating that possesses two modes of antimicrobial inactivation, passive contact inactivation through amine/imine functionalities and active photodynamic inactivation through the generation of reactive oxygen species (ROS). This material can be coated and cross-linked onto natural and synthetic textiles through a simple soak procedure, followed by UV cure to afford materials exhibiting no aqueous leaching and only minimal leaching in organic solvents. This coating minimally impacts the mechanical properties of the fabric while also imparting hydrophobicity. Passive inactivation of Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) is achieved with >98% inactivation after 24 h, with a 23× and 3× inactivation rate increase against E. coli and MRSA, respectively, when green light is used to generate ROS. Up to 90% decrease in the infectivity of SARS-CoV-2 after 2 h of irradiated incubation with the material is demonstrated. These results show that modifying textiles with dual-functional polymers results in robust and highly antimicrobial materials that are expected to find widespread use in combating the spread of deadly pathogens.


Asunto(s)
Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Polímeros/química , SARS-CoV-2/efectos de los fármacos , Textiles/análisis , Antiinfecciosos/química , COVID-19/prevención & control , COVID-19/virología , Materiales Biocompatibles Revestidos/farmacología , Escherichia coli/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , SARS-CoV-2/aislamiento & purificación , Textiles/toxicidad , Rayos Ultravioleta
4.
Cell Rep ; 37(4): 109892, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34672947

RESUMEN

The main viral protease (3CLpro) is indispensable for SARS-CoV-2 replication. We delineate the human protein substrate landscape of 3CLpro by TAILS substrate-targeted N-terminomics. We identify more than 100 substrates in human lung and kidney cells supported by analyses of SARS-CoV-2-infected cells. Enzyme kinetics and molecular docking simulations of 3CLpro engaging substrates reveal how noncanonical cleavage sites, which diverge from SARS-CoV, guide substrate specificity. Cleaving the interactors of essential effector proteins, effectively stranding them from their binding partners, amplifies the consequences of proteolysis. We show that 3CLpro targets the Hippo pathway, including inactivation of MAP4K5, and key effectors of transcription, mRNA processing, and translation. We demonstrate that Spike glycoprotein directly binds galectin-8, with galectin-8 cleavage disengaging CALCOCO2/NDP52 to decouple antiviral-autophagy. Indeed, in post-mortem COVID-19 lung samples, NDP52 rarely colocalizes with galectin-8, unlike in healthy lungs. The 3CLpro substrate degradome establishes a foundational substrate atlas to accelerate exploration of SARS-CoV-2 pathology and drug design.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus/metabolismo , SARS-CoV-2/metabolismo , Humanos , Especificidad por Sustrato
5.
J Gen Virol ; 102(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34356002

RESUMEN

The family Marnaviridae comprises small non-enveloped viruses with positive-sense RNA genomes of 8.6-9.6 kb. Isolates infect marine single-celled eukaryotes (protists) that come from diverse lineages. Some members are known from metagenomic studies of ocean virioplankton, with additional unclassified viruses described from metagenomic datasets derived from marine and freshwater environments. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Marnaviridae, which is available at ictv.global/report/marnaviridae.


Asunto(s)
Genoma Viral , Filogenia , Virus ARN/clasificación , Virus ARN/genética , Animales , Proteínas de la Cápside , Eucariontes , Especificidad del Huésped , Hidrobiología , Metagenómica , Infecciones por Virus ARN/virología , Virus ARN/ultraestructura , ARN Viral , Virión/clasificación , Virión/genética , Virión/ultraestructura , Replicación Viral
6.
Viruses ; 13(3)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802878

RESUMEN

The dicistrovirus intergenic region internal ribosome entry site (IGR IRES) uses an unprecedented, streamlined mechanism whereby the IRES adopts a triple-pseudoknot (PK) structure to directly bind to the conserved core of the ribosome and drive translation from a non-AUG codon. The origin of this IRES mechanism is not known. Previously, a partial fragment of a divergent dicistrovirus RNA genome, named ancient Northwest territories cripavirus (aNCV), was extracted from 700-year-old caribou feces trapped in a subarctic ice patch. The aNCV IGR sequence adopts a secondary structure similar to contemporary IGR IRES structures, however, there are subtle differences including 105 nucleotides upstream of the IRES of unknown function. Using filter binding assays, we showed that the aNCV IRES could bind to purified ribosomes, and toeprinting analysis pinpointed the start site at a GCU alanine codon adjacent to PKI. Using a bicistronic reporter RNA, the aNCV IGR can direct translation in vitro in a PKI-dependent manner. Lastly, a chimeric infectious clone swapping in the aNCV IRES supported translation and virus infection. The characterization and resurrection of a functional IGR IRES from a divergent 700-year-old virus provides a historical framework for the importance of this viral translational mechanism.


Asunto(s)
Dicistroviridae , Sitios Internos de Entrada al Ribosoma , Reno/virología , Animales , ADN Antiguo , ADN Intergénico/metabolismo , Dicistroviridae/genética , Dicistroviridae/fisiología , Heces/virología , Territorios del Noroeste , Ribosomas/metabolismo
7.
Pharmacol Biochem Behav ; 193: 172928, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32289330

RESUMEN

Acute and chronic stressors are common triggers of human mental illnesses. Experimental animal models and their cross-species translation to humans are critical for understanding of the pathogenesis of stress-related psychiatric disorders. Mounting evidence suggests that both pharmacological and non-pharmacological approaches can be efficient in treating these disorders. Here, we analyze human, rodent and zebrafish (Danio rerio) data to compare the impact of non-pharmacological and pharmacological therapies of stress-related psychopathologies. Emphasizing the likely synergism and interplay between pharmacological and environmental factors in mitigating daily stress both clinically and in experimental models, we argue that environmental enrichment emerges as a promising complementary therapy for stress-induced disorders across taxa. We also call for a broader use of novel model organisms, such as zebrafish, to study such treatments and their potential interplay.


Asunto(s)
Ansiolíticos/uso terapéutico , Antidepresivos/uso terapéutico , Terapias Complementarias/métodos , Trastornos Mentales/tratamiento farmacológico , Roedores , Pez Cebra , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Trastornos Mentales/etiología , Estrés Psicológico/complicaciones , Resultado del Tratamiento
8.
Artículo en Inglés | MEDLINE | ID: mdl-31396490

RESUMEN

Myocarditis, inflammation of the heart muscle, affects all demographics and is a major cause of sudden and unexpected death in young people. It is most commonly caused by viral infections of the heart, with coxsackievirus B3 (CVB3) being among the most prevalent pathogens. To understand the molecular pathogenesis of CVB3 infection and provide strategies for developing treatments, we examined the role of a key nuclear pore protein 98 (NUP98) in the setting of viral myocarditis. NUP98 was cleaved as early as 2 h post-CVB3 infection. This cleavage was further verified through both the ectopic expression of viral proteases and in vitro using purified recombinant CVB3 proteases (2A and 3C), which demonstrated that CVB3 2A but not 3C is responsible for this cleavage. By immunostaining and confocal imaging, we observed that cleavage resulted in the redistribution of NUP98 to punctate structures in the cytoplasm. Targeted siRNA knockdown of NUP98 during infection further increased viral protein expression and viral titer, and reduced cell viability, suggesting a potential antiviral role of NUP98. Moreover, we discovered that expression levels of neuregulin-1 (NRG1), a cardioprotective gene, and presenilin-1 (PSEN1), a cellular protease processing the tyrosine kinase receptor ERBB4 of NRG1, were reliant upon NUP98 and were downregulated during CVB3 infection. In addition, expression of these NUP98 target genes in myocardium tissue not only occurred at an earlier phase of infection, but also appeared in areas away from the initial inflammatory regions. Collectively, CVB3-induced cleavage of NUP98 and subsequent impairment of the cardioprotective NRG1-ERBB4/PSEN1 signaling cascade may contribute to increased myocardial damage in the context of CVB3-induced myocarditis. To our knowledge, this is the first study to demonstrate the link between NUP98 and the NRG1 signaling pathway in viral myocarditis.


Asunto(s)
Infecciones por Coxsackievirus/patología , Cisteína Endopeptidasas/metabolismo , Enterovirus Humano B/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Miocarditis/patología , Miocardio/patología , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Virales/metabolismo , Animales , Modelos Animales de Enfermedad , Expresión Génica , Células HeLa , Humanos , Ratones , Modelos Biológicos , Neurregulina-1/metabolismo , Presenilina-1/metabolismo , Transporte de Proteínas , Proteolisis
9.
mSphere ; 4(2)2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30944212

RESUMEN

RNA viruses, particularly genetically diverse members of the Picornavirales, are widespread and abundant in the ocean. Gene surveys suggest that there are spatial and temporal patterns in the composition of RNA virus assemblages, but data on their diversity and genetic variability in different oceanographic settings are limited. Here, we show that specific RNA virus genomes have widespread geographic distributions and that the dominant genotypes are under purifying selection. Genomes from three previously unknown picorna-like viruses (BC-1, -2, and -3) assembled from a coastal site in British Columbia, Canada, as well as marine RNA viruses JP-A, JP-B, and Heterosigma akashiwo RNA virus exhibited different biogeographical patterns. Thus, biotic factors such as host specificity and viral life cycle, and not just abiotic processes such as dispersal, affect marine RNA virus distribution. Sequence differences relative to reference genomes imply that virus quasispecies are under purifying selection, with synonymous single-nucleotide variations dominating in genomes from geographically distinct regions resulting in conservation of amino acid sequences. Conversely, sequences from coastal South Africa that mapped to marine RNA virus JP-A exhibited more nonsynonymous mutations, probably representing amino acid changes that accumulated over a longer separation. This biogeographical analysis of marine RNA viruses demonstrates that purifying selection is occurring across oceanographic provinces. These data add to the spectrum of known marine RNA virus genomes, show the importance of dispersal and purifying selection for these viruses, and indicate that closely related RNA viruses are pathogens of eukaryotic microbes across oceans.IMPORTANCE Very little is known about aquatic RNA virus populations and genome evolution. This is the first study that analyzes marine environmental RNA viral assemblages in an evolutionary and broad geographical context. This study contributes the largest marine RNA virus metagenomic data set to date, substantially increasing the sequencing space for RNA viruses and also providing a baseline for comparisons of marine RNA virus diversity. The new viruses discovered in this study are representative of the most abundant family of marine RNA viruses, the Marnaviridae, and expand our view of the diversity of this important group. Overall, our data and analyses provide a foundation for interpreting marine RNA virus diversity and evolution.


Asunto(s)
Genoma Viral , Océanos y Mares , Cuasiespecies , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Evolución Molecular , Variación Genética , Genotipo , Geografía , Picornaviridae/clasificación , Picornaviridae/aislamiento & purificación , Agua de Mar/virología
10.
Viruses ; 11(3)2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30934644

RESUMEN

Charophyte algae, not chlorophyte algae, are the ancestors of 'higher plants'; hence, viruses infecting charophytes may be related to those that first infected higher plants. Streamwaters from British Columbia, Canada, yielded single-stranded RNA metagenomes of Charavirus canadensis (CV-Can), that are similar in genomic architecture, length (9593 nt), nucleotide identity (63.4%), and encoded amino-acid sequence identity (53.0%) to those of Charavirus australis (CV-Aus). The sequences of their RNA-dependent RNA-polymerases (RdRp) resemble those found in benyviruses, their helicases those of hepaciviruses and hepegiviruses, and their coat-proteins (CP) those of tobamoviruses; all from the alphavirus/flavivirus branch of the 'global RNA virome'. The 5'-terminus of the CV-Can genome, but not that of CV-Aus, is complete and encodes a methyltransferase domain. Comparisons of CP sequences suggests that Canadian and Australian charaviruses diverged 29⁻46 million years ago (mya); whereas, the CPs of charaviruses and tobamoviruses last shared a common ancestor 212 mya, and the RdRps of charaviruses and benyviruses 396 mya. CV-Can is sporadically abundant in low-nutrient freshwater rivers in British Columbia, where Charabraunii, a close relative of C.australis, occurs, and which may be its natural host. Charaviruses, like their hosts, are ancient and widely distributed, and thus provide a window to the viromes of early eukaryotes and, even, Archaea.


Asunto(s)
Evolución Molecular , Metagenoma , Virus ARN/genética , Colombia Británica , Agua Dulce/virología , Filogenia , Virus ARN/enzimología , Virus ARN/aislamiento & purificación , ARN Polimerasa Dependiente del ARN/genética , Homología de Secuencia de Aminoácido , Tobamovirus/genética
11.
Virus Evol ; 5(2): vez056, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31908848

RESUMEN

Metagenomics has altered our understanding of microbial diversity and ecology. This includes its applications to viruses in marine environments that have demonstrated their enormous diversity. Within these are RNA viruses, many of which share genetic features with members of the order Picornavirales; yet, very few of these have been taxonomically classified. The only recognized family of marine RNA viruses is the Marnaviridae, which was founded based on discovery and characterization of the species Heterosigma akashiwo RNA virus. Two additional genera of marine RNA viruses, Labyrnavirus (one species) and Bacillarnavirus (three species), were subsequently defined within the order Picornavirales but not assigned to a family. We have defined a sequence-based framework for taxonomic classification of twenty marine RNA viruses into the family Marnaviridae. Using RNA-dependent RNA polymerase (RdRp) phylogeny and distance-based analyses, we assigned the genera Labyrnavirus and Bacillarnavirus to the family Marnaviridae and created four additional genera in the family: Locarnavirus (four species), Kusarnavirus (one species), Salisharnavirus (four species) and Sogarnavirus (six species). We used pairwise capsid protein comparisons to delineate species within families, with 75 per cent identity as the species demarcation threshold. The family displays high sequence diversities and Jukes-Cantor distances for both the RdRp and capsid genes, suggesting that the classified viruses are not representative of all of the virus diversity within the family and that there are many more extant taxa. Our proposed taxonomic framework provides a sound classification system for this group of viruses that will have broadly applicable principles for other viral groups. It is based on sequence data alone and provides a robust taxonomic framework to include viruses discovered via metagenomic studies, thereby greatly expanding the realm of viruses subject to taxonomic classification.

12.
Virology ; 476: 323-333, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25577149

RESUMEN

Alphatetraviruses are small (+) ssRNA viruses with non-enveloped, icosahedral, T=4 particles that assemble from 240 copies of a single capsid protein precursor. This study is focused on the mechanisms underlying selection and packaging of genomic vRNAs by Helicoverpa armigera stunt virus. We demonstrate that the viral protein, p17, is packaged at low levels (between 4 and 8 copies per capsid) raising the possibility of icosahedral asymmetry in wild-type particles. p17 promotes packaging of vRNA2 by virus-like particles (VLPs) generated from plasmid-expressed vRNA2. The 5' and 3' UTRs of RNA2 are not required for encapsidation. VLPs produced by recombinant baculoviruses package vRNA2 at detectable levels even in the absence of p17 and apparently excluding baculoviral transcripts. This suggests a role for p17 in vRNA selectivity. This is one of few examples of the packaging of a minor non-structural protein by (+) ssRNA animal viruses.


Asunto(s)
Virus de Insectos/fisiología , Lepidópteros/virología , Virus ARN/fisiología , ARN Viral/metabolismo , Ensamble de Virus , Animales , Cápside/metabolismo , Virus de Insectos/genética , Virus ARN/genética , ARN Viral/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...