Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Oleo Sci ; 73(5): 787-799, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692900

RESUMEN

Launaea sarmentosa, also known as Sa Sam Nam, is a widely used remedy in Vietnamese traditional medicine and cuisine. However, the chemical composition and bioactivity of its essential oil have not been elucidated yet. In this study, we identified 40 compounds (98.6% of total peak area) in the essential oil via GC-MS analysis at the first time. Among them, five main compounds including Thymohydroquinone dimethyl ether (52.4%), (E)-α-Atlantone (9.0%), Neryl isovalerate (6.6%), Davanol D2 (isomer 2) (3.9%), and trans-Sesquisabinene hydrate (3.9%) have accounted for 75.8% of total peak area. The anti-bacterial activity of the essential oil against 4 microorganisms including Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa has also investigated via agar well diffusion assay. The results showed that the essential oil exhibited a strong antibacterial activity against Bacillus subtilis with the inhibition zones ranging from 8.2 to 18.7 mm. To elucidate the anti-bacterial effect mechanism of the essential oil, docking study of five main compounds of the essential oil (Thymohydroquinone dimethyl ether, (E)-α-Atlantone, Neryl isovalerate, Davanol D2 (isomer 2), and trans-Sesquisabinene hydrate) against some key proteins for bacterial growth such as DNA gyrase B, penicillin binding protein 2A, tyrosyl-tRNA synthetase, and dihydrofolate reductase were performed. The results showed that the main constituents of essential oil were highly bound with penicillin binding protein 2A with the free energies ranging -27.7 to -44.8 kcal/mol, which suggests the relationship between the antibacterial effect of essential oil and the affinity of main compounds with penicillin binding protein. In addition, the free energies of main compounds of the essential oil with human cyclooxygenase 1, cyclooxygenase 2, and phospholipase A2, the crucial proteins related with inflammatory response were less than diclofenac, a non-steroidal antiinflammatory drug. These findings propose the essential oil as a novel and promising anti-bacterial and anti-inflammatory medicine or cosmetic products.


Asunto(s)
Antibacterianos , Bacillus subtilis , Hemiterpenos , Simulación del Acoplamiento Molecular , Aceites Volátiles , Ácidos Pentanoicos , Antibacterianos/farmacología , Antibacterianos/aislamiento & purificación , Antibacterianos/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Bacillus subtilis/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Tetrahidrofolato Deshidrogenasa/metabolismo , Girasa de ADN/metabolismo , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Pruebas de Sensibilidad Microbiana , Cromatografía de Gases y Espectrometría de Masas
2.
J Mol Graph Model ; 129: 108747, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38447296

RESUMEN

Cyclooxygenases 1 and 2 (COX-1/2) are enzymes renowned for inducing inflammatory responses through the production of prostaglandins. Thus, the development of COX inhibitors has been a promising approach for identifying compounds with anti-inflammatory potential. In this study, we designed 27 new compounds (1-27) based on the structure of a previously known COX inhibitor, using the Ligand Designer tool. Our aim was to improve the affinity of the compounds with COX enzymes by inducing interactions with residue Arg120 while retaining the good π-π stacking interactions of the chromene-phenyl scaffold. Through screening based on ligand-binding free energy defined by molecular docking simulations and MM/GBSA technique, compounds 9 and 10 were identified as having the highest ability to inhibit COX proteins. The binding affinities of the two compounds with COX-1/2 were superior to those of the original NAI10 compound and the reference drug indomethacin. Our virtual screening suggests that compounds 9 and 10 have a strong ability to inhibit COX-1/2 and thus could be promising candidates for further anti-inflammatory drug studies. In essence, our study underscores the pivotal role of the N-aryl iminocoumarin scaffold in shaping the future landscape of novel anti-inflammatory drug development.


Asunto(s)
Antiinflamatorios , Inhibidores de la Ciclooxigenasa 2 , Simulación del Acoplamiento Molecular , Ligandos , Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA