Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biopolymers ; : e23628, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301862

RESUMEN

Bone tissue engineering is a promising technology being studied globally to become an effective and sustainable method to treat the problems of damaged or diseased bones. In this work, we developed an in situ cross-linking hydrogel system that combined N-succinyl chitosan (NSC) and oxidized alginate (OA) at varying mixing ratios through Schiff base cross-linking. The hydrogel system also contains biphasic calcium phosphate (BCP) and ascorbic acid (AA), which could enhance biological characteristics and accelerate bone repair. The hydrogels' properties were examined through physicochemical tests such as scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD), pore size and porosity measurement, swelling ratio, degradation rate, AA release study, as well as cytocompatibility, including live/dead and cytotoxicity assays. The results revealed that the supplementation of AA and BCP components can affect the physico-mechanical properties of the hydrogel system. However, they exhibited noncytotoxic properties. Overall, the results demonstrated that the hydrogel composed of 3% (w/v) NSC and 3% (w/v) OA (NSC: OA volume ratio is 8:2) loaded with 40% (w/w) BCP and 0.3 mg/mL AA has the potential for bone regeneration.

2.
Interv Cardiol ; 19: e17, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39309299

RESUMEN

COVID-19 patients may experience acute mesenteric ischaemia. Identifying acute mesenteric ischaemia is challenging, particularly as initial symptoms are often vague and easily overlooked. Early detection and immediate intervention to restore blood flow can prevent these severe consequences. Presented in this report are two cases of superior mesenteric artery (SMA) thrombosis following severe acute respiratory syndrome coronavirus 2 infection. CT scans demonstrated SMA thrombosis in both patients, with no evidence of bowel necrosis. Endovascular intervention with self-expanding stent placement was performed after angiographic confirmation of the diagnosis. At 6-month follow-up, both patients remained asymptomatic on dual antiplatelet therapy. Atypical gastrointestinal manifestations in COVID-19 patients should raise suspicion for uncommon complications, such as SMA thrombosis. For SMA occlusion without associated bowel necrosis, endovascular therapy represents a viable treatment approach.

3.
Regen Med ; : 1-13, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263954

RESUMEN

Background: Heart failure (HF) causes over 266,400 deaths annually. Despite treatment advancements, HF mortality remains high. Induced pluripotent stem cells (iPSCs) offer promising new options. This review assesses iPSC-based treatments for HF.Method: the review included studies from PubMed, ScienceDirect and Web of Science.Results: Analysis of 25 studies with 553 animals showed a baseline ejection fraction (EF) of 39.2 ± 8.9%. iPSC treatment significantly improved EF (MD = 8.6, p < 0.001) and fractional shortening (MD = 6.38, p < 0.001), and reduced ventricular remodeling without increasing arrhythmia risk.Conclusion: iPSC-based therapy improves heart function and reduces ventricular volumes in HF animal models, aligning with promising early clinical trial outcomes.


Heart failure is a condition where the heart struggles to pump blood effectively, leading to severe health problems. Traditional treatments often fall short, and many patients don't survive long-term. Our study explores a new treatment using induced pluripotent stem cells, which can become any type of cell, including heart cells. The results showed that iPSC treatment significantly improved heart function and reduced heart damage without increasing the risk of irregular heartbeats. In general, iPSC therapy holds promise for treating heart failure by enhancing heart function and reducing damage. More research is needed to confirm its benefits and safety in humans, but this approach could offer new hope for heart failure patients.

4.
RSC Adv ; 14(37): 27265-27273, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39193277

RESUMEN

Methylene Blue (MB) is an industrial chemical used in a broad range of applications, and hence its discharge is a concern. Yet, the environmental effects of its degradation by HO˙ radicals have not been fully studied yet. This study employs quantum chemical calculations to investigate the two-step degradation of MB by HO˙ radicals in aqueous environments. It was found that MB undergoes a rapid reaction with the HO˙ radical, with an overall rate constant of 5.51 × 109 to 2.38 × 1010 M-1 s-1 and has a rather broad lifetime range of 11.66 hours to 5.76 years in water at 273-383 K. The calculated rate constants are in good agreement with the experimental values (k calculation/k experimental = 2.62, pH > 2, 298 K) attesting to the accuracy of the calculation method. The HO˙ + MB reaction in water followed the formal hydrogen transfer and radical adduct formation mechanisms, yielding various intermediates and products. Based on standard tests these intermediates and some of the products can pose a threat to aquatic organisms, including fish, daphnia, and green algae, they have poor biodegradability and have the potential to induce developmental toxicity. Hence MB in the environment is of moderate concern depending on the ratio of safe to harmful breakdown products.

5.
RSC Adv ; 14(34): 24438-24446, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39108963

RESUMEN

Pyrrolo[2,3-b]quinoxaline derivatives are known to possess antioxidant, anticancer, and antibacterial properties. Here we report the successful synthesis of five derivatives of 3-hydroxy-3-pyrroline-2-one through substitution. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was employed to evaluate the antioxidant activity of the compounds. Out of these, ethyl 1,2-diphenyl-1H-pyrrolo[2,3-b]quinoxaline-3-carboxylate (3a) demonstrated the greatest potential as a radical scavenger. Thermodynamic and kinetic calculations of the radical scavenging activity indicated that 3a exhibited HO˙ radical scavenging activity with the overall rate constant of 8.56 × 108 M-1 s-1 in pentyl ethanoate; however, it was incapable of scavenging hydroperoxyl radicals in nonpolar media. In non-polar environments, the hydroxyl radical scavenging capability of 3a is fairly similar to that of reference antioxidants such as Trolox, melatonin, indole-3-carbinol, and gallic acid. Hence, in the physiological lipid environment, 3a holds promise as a scavenger of HO˙ radicals.

6.
RSC Adv ; 14(33): 23629-23637, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39077313

RESUMEN

Coumarinolignans such as cleomiscosin A (CMA), cleomiscosin B (CMB), and cleomiscosin C (CMC) are secondary metabolites that were isolated from diverse plant species. Cleomiscosins (CMs) have numerous interesting biological activities, including noteworthy cytotoxicity of cancer cell lines along with hepatoprotective and assumed antioxidant activities. In this present study, the antioxidant properties of three cleomiscosins were investigated with a focus on the structure-activity relationship using thermodynamic and kinetic calculations with the M06-2X/6-311++G(d,p) method. The results show that CMs, including CMA, CMB, and CMC, are weak antioxidants in apolar environments, with k overall of 7.52 × 102 to 6.28 × 104 M-1 s-1 for the HOO˙ radical scavenging reaction in the gas phase and 3.47 × 102 to 6.44 × 104 M-1 s-1 in pentyl ethanoate. Remarkably, the difference in the fusion of phenylpropanoid structure with coumarin via two ortho-hydroxyl groups (CMA and CMB) does not cause any noticeable effect on their antioxidant activity, while the presence of a methoxy substitute on the aromatic ring of phenylpropanoid units (CMC) increases the reaction rate to about 61 to 84 times faster than that of CMA. In contrast, the studied CMs exhibit a good antioxidant capacity in polar environments, with a k overall range from 4.03 × 107 to 8.66 × 107 M-1 s-1, 102-103 times faster than that of Trolox, equal to that of ascorbic acid and resveratrol. The angular fusion of the phenylpropanoid and coumarin structures, as well as the methoxy substitution on the aromatic ring of the phenylpropanoid unit of the studied CMs, do not have any considerable effect on their antioxidant activity under the studied conditions.

7.
Interv Cardiol ; 19: e08, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915851

RESUMEN

Background: Left main (LM) coronary artery disease (CAD) is a severe condition that can lead to severe outcomes. Treatment options include medication, coronary artery bypass graft surgery (CABG) and percutaneous coronary intervention (PCI). Recent advancements in PCI techniques position it as a viable alternative to CABG for LM revascularisation. Methods: This prospective observational study evaluated outcomes after PCI for LM CAD, encompassing in-hospital and post-discharge mortality, in a single-centre registry in Vietnam. Results: Our research involved 59 patients who underwent PCI for LM lesions, with an average age of 66.7 ±1.5 years, who were divided into two groups based on presentation diagnosis - acute coronary syndrome or chronic coronary syndrome. After PCI, one individual was diagnosed with contrast-induced nephropathy and one with cardiac shock. There were two cases of in-hospital mortality in the acute coronary syndrome group and one in the chronic coronary syndrome group giving a rate of major adverse cardiac and cerebrovascular events (MACCE) of 5.1%. After a 12-month follow-up, the MACCE rate increased to 18.6%. Triple vessel coronary artery disease and troponin I elevation exhibited significant associations with adverse in-hospital outcomes (p<0.05). Conclusion: PCI for LM coronary artery disease is considered a safe treatment option, demonstrating relatively favourable in-hospital and mid-term outcomes. It presents a viable alternative for patients in need of revascularisation, particularly in cases where CABG is not the preferred choice. Clinical indicators, such as triple vessel coronary artery disease and elevated troponin I levels, may serve as predictors of adverse outcomes during hospitalisation.

8.
PLoS One ; 19(5): e0302537, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38771829

RESUMEN

BACKGROUND: Stem cell research, particularly in the domain of induced pluripotent stem cell (iPSC) technology, has shown significant progress. The integration of artificial intelligence (AI), especially machine learning (ML) and deep learning (DL), has played a pivotal role in refining iPSC classification, monitoring cell functionality, and conducting genetic analysis. These enhancements are broadening the applications of iPSC technology in disease modelling, drug screening, and regenerative medicine. This review aims to explore the role of AI in the advancement of iPSC research. METHODS: In December 2023, data were collected from three electronic databases (PubMed, Web of Science, and Science Direct) to investigate the application of AI technology in iPSC processing. RESULTS: This systematic scoping review encompassed 79 studies that met the inclusion criteria. The number of research studies in this area has increased over time, with the United States emerging as a leading contributor in this field. AI technologies have been diversely applied in iPSC technology, encompassing the classification of cell types, assessment of disease-specific phenotypes in iPSC-derived cells, and the facilitation of drug screening using iPSC. The precision of AI methodologies has improved significantly in recent years, creating a foundation for future advancements in iPSC-based technologies. CONCLUSIONS: Our review offers insights into the role of AI in regenerative and personalized medicine, highlighting both challenges and opportunities. Although still in its early stages, AI technologies show significant promise in advancing our understanding of disease progression and development, paving the way for future clinical applications.


Asunto(s)
Inteligencia Artificial , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes Inducidas/citología , Humanos , Medicina Regenerativa/métodos , Aprendizaje Automático
9.
RSC Adv ; 14(6): 4179-4187, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38292262

RESUMEN

Caffeoylquinic acids (CQAs) are well-known antioxidants. However, a key aspect of their radical scavenging activity - the mechanism of action - has not been addressed in detail thus far. Here we report on a computational study of the mechanism of activity of CQAs in scavenging hydroperoxyl radicals. In water at physiological pH, the CQAs demonstrated ≈ 104 times higher HOO˙ antiradical activity than in lipid medium (k(lipid) ≈ 104 M-1 s-1). The activity in the aqueous solution was determined by the hydrogen transfer mechanism of the adjacent hydroxyl group (O6'-H) of the dianion states (Γ = 93.2-95.2%), while the single electron transfer reaction of these species contributed 4.8-6.8% to the total rate constants. The kinetics estimated by the calculations are consistent with experimental findings in water (pH = 7.5), yielding a kcalculated/kexperimental = 2.4, reinforcing the reliability and precision of the computational method and demonstrating its utility for evaluating radical reactions in silico. The results also revealed the pH dependence of the HOO˙ scavenging activity of the CQAs; activity was comparable for all compounds below pH 3, however at higher pH values 5CQA reacted with the HOO˙ with lower activity than 3CQA or 4CQA. It was also found that CQAs are less active than Trolox below pH 4.7, however over pH 5.0 they showed higher activity than the reference. The CQAs had the best HOO˙ antiradical activity at pH values between 5.0 and 8.6. Therefore, in the physiological environment, the hydroperoxyl antiradical capacity of CQAs exhibits similarity to renowned natural antioxidants including resveratrol, ascorbic acid, and Trolox.

10.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256060

RESUMEN

Ischemic heart disease (IHD) poses a significant challenge in cardiovascular health, with current treatments showing limited success. Induced pluripotent derived-cardiomyocyte (iPSC-CM) therapy within regenerative medicine offers potential for IHD patients, although its clinical impacts remain uncertain. This study utilizes meta-analysis to assess iPSC-CM outcomes in terms of efficacy and safety in IHD animal model studies. A meta-analysis encompassing PUBMED, ScienceDirect, Web of Science, and the Cochrane Library databases, from inception until October 2023, investigated iPSC therapy effects on cardiac function and safety outcomes. Among 51 eligible studies involving 1012 animals, despite substantial heterogeneity, the iPSC-CM transplantation improved left ventricular ejection fraction (LVEF) by 8.23% (95% CI, 7.15 to 9.32%; p < 0.001) compared to control groups. Additionally, cell-based treatment reduced the left ventricle fibrosis area and showed a tendency to reduce left ventricular end-systolic volume (LVESV) and end-diastolic volume (LVEDV). No significant differences emerged in mortality and arrhythmia risk between iPSC-CM treatment and control groups. In conclusion, this meta-analysis indicates iPSC-CM therapy's promise as a safe and beneficial intervention for enhancing heart function in IHD. However, due to observed heterogeneity, the efficacy of this treatment must be further explored through large randomized controlled trials based on rigorous research design.


Asunto(s)
Células Madre Pluripotentes Inducidas , Isquemia Miocárdica , Humanos , Animales , Miocitos Cardíacos , Volumen Sistólico , Función Ventricular Izquierda , Isquemia Miocárdica/terapia , Modelos Animales de Enfermedad
11.
J Phys Chem B ; 127(51): 11045-11053, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38103025

RESUMEN

Rubiadin (RBD), an anthraquinone derivative, is obtained from Rubia cordifolia, a plant species classified under the Rubiaceae family. Rubiadin has proven beneficial properties, such as anticancer, neuroprotective, anti-inflammatory, and antidiabetic activity. The antioxidant activity of this molecule was suggested by some experimental results but has not been clearly established thus far. In this study, we employ DFT calculations to comprehensively assess the mechanism and kinetics of the HO•/HOO• radical scavenging activity of this compound in relation to solvents. RBD showed moderate HO• radical scavenging activity, with rate constants of 2.95 × 108 and 1.82 × 1010 M-1 s-1 in lipid and polar media, respectively. In the aqueous solution, the compound exhibited remarkable superoxide anion radical scavenging activity (k = 4.93 × 108 M-1 s-1) but modest HOO• antiradical activity. RBD also showed promising antiradical activity against a variety of radicals (CCl3O•, CCl3OO•, NO2, SO4•-, and N3•), while experimental and computational results confirmed that RBD has moderate activity in DPPH/ABTS•+ assays. Thus, RBD is predicted to be a good, albeit selective, radical scavenger.


Asunto(s)
Antraquinonas , Antioxidantes , Antioxidantes/farmacología , Antraquinonas/farmacología , Extractos Vegetales , Solventes , Depuradores de Radicales Libres/farmacología
12.
J Org Chem ; 88(24): 17237-17248, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38011833

RESUMEN

Rosmarinic acid (RA) is reported in separate studies to be either an inducer or reliever of oxidative stress, and this contradiction has not been resolved. In this study, we present a comprehensive examination of the radical scavenging activity of RA using density functional theory calculations in comparison with experimental data. In model physiological media, RA exhibited strong HO• radical scavenging activity with overall rate constant values of 2.89 × 1010 and 3.86 × 109 M-1 s-1. RA is anticipated to exhibit excellent scavenging properties for HOO• in an aqueous environment (koverall = 3.18 × 108 M-1 s-1, ≈2446 times of Trolox) following the hydrogen transfer and single electron transfer pathways of the dianion state. The neutral form of the activity is equally noteworthy in a lipid environment (koverall = 3.16 × 104 M-1 s-1) by the formal hydrogen transfer mechanism of the O6(7,15,16)-H bonds. Chelation with RA may prevent Cu(II) from reduction by the ascorbic acid anion (AA-), hence blocking the OIL-1 pathway, suggesting that RA in an aqueous environment also serves as an OIL-1 antioxidant. The computational findings exhibit strong concurrence with the experimental observations, indicating that RA possesses a significant efficacy as a radical scavenger in physiological environments.


Asunto(s)
Antioxidantes , Antioxidantes/farmacología , Antioxidantes/química , Estrés Oxidativo , Ácido Ascórbico , Agua/química , Hidrógeno , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química
13.
Acta Neuropathol Commun ; 11(1): 172, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891635

RESUMEN

Distinctive post-translational modifications (PTM) characterize tau inclusions found in tauopathy patients. Using detergent-insoluble tau isolated from Alzheimer's disease (AD-tau) or Progressive Supranuclear Palsy (PSP-tau) patients, we provide insights into whether phosphorylation of critical residues determine templated tau seeding. Our initial data with phosphorylation-ablating mutations (Ser/Thr → Ala) on select sites of P301L tau showed no changes in seeding efficacy by AD-tau or PSP-tau. Interestingly, when specific sites in the R1-R2 repeat domains (Ser262/Thr263/Ser289/Ser305) were mutated to phosphorylation-mimicking amino acid Glu, it substantially reduced the seeding efficiency of AD-tau, but not PSP-tau seeds. The resultant detergent-insoluble tau shows deficient phosphorylation on AT8, AT100, AT180 and PHF1 epitopes, indicating inter-domain cooperativity. We further identify Ser305 as a critical determinant of AD-tau-specific seeding, whereby the phospho-mimicking Ser305Glu tau abrogates seeding by AD-tau but not PSP-tau. This suggests that phosphorylation on Ser305 could be related to the formation of disease-specific tau strains. Our results highlight the existence of a phospho-PTM code in tau seeding and further demonstrate the distinctive nature of this code in 4R tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Proteínas tau/metabolismo , Fosforilación , Detergentes , Tauopatías/genética , Tauopatías/metabolismo , Enfermedad de Alzheimer/metabolismo
14.
ACS Omega ; 8(41): 38668-38675, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867707

RESUMEN

Sumatranus lignans (SL) isolated from Cleistanthus sumatranus have demonstrated bioactivities, e.g., they were shown to exhibit immunosuppressive properties in previous research. Their structure suggests potential antioxidant activity that has not attracted any attention thus far. Consistently, a comprehensive analysis of the antioxidant activity of these compounds is highly desirable with the view of prospective medical applications. In this work, the mechanism and kinetics of the antiradical properties of SL against hydroperoxyl radicals were studied by using calculations based on density functional theory (DFT). In the lipid medium, it was discovered that SL reacted with HOO• through the formal hydrogen transfer mechanism with a rate constant of 101-105 M-1 s-1, whereas in aqueous media, the activity primarily occurred through the sequential proton loss electron transfer mechanism with rate constants of 102-108 M-1 s-1. In both lipidic and aqueous environments, the antiradical activity of compounds 6 and 7 exceeds that of resveratrol, ascorbic acid, and Trolox. These substances are therefore predicted to be good radical scavengers in physiological environments.

15.
RSC Adv ; 13(34): 23402-23408, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37546223

RESUMEN

Poly(N-vinylpyrrolidone) (PVP) is a polymer with many applications in cosmetic, pharmaceutical, and biomedical formulations due to its minimal toxicity. PVP can be synthesized through radical polymerization in organic solvents; this well-known industrial process is thoroughly characterized experimentally, however, quantum chemical modeling of the process is scarce: the mechanism and kinetics have not been thoroughly investigated yet. In this work, the mechanism and kinetics of the alkoxy radical polymerization of N-vinylpyrrolidone in organic solvents, namely isopropanol (IP) and toluene (TL), were successfully modeled by computational chemistry. The initiator radicals di-tert-butyl peroxide (TBO˙) and dicumyl peroxide (CMO˙) as well as the solvents isopropanol and toluene, were shown to be capable of assisting in the initiation reactions. The rate constant was influenced by the combination of initiators and solvent and the values of the rate constant of propagation were approximately 101-103 M-1 s-1. The radical polymerization of NVP with dicumyl peroxide as an initiator was comparable to that of di-tert-butyl peroxide in all of the examined organic solvents, whereas the solvents had less of an effect.

16.
Acta Neuropathol Commun ; 11(1): 99, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337279

RESUMEN

Apolipoprotein (APOE) E4 isoform is a major risk factor of Alzheimer's disease and contributes to metabolic and neuropathological abnormalities during brain aging. To provide insights into whether APOE4 genotype is related to tau-associated neurodegeneration, we have generated human P301S mutant tau transgenic mice (PS19) that carry humanized APOE alleles (APOE2, APOE3 or APOE4). In aging mice that succumbed to paralysis, PS19 mice homozygous for APOE3 had the longest lifespan when compared to APOE4 and APOE2 homozygous mice (APOE3 > APOE4 ~ APOE2). Heterozygous mice with one human APOE and one mouse Apoe allele did not show any variations in lifespan. At end-stage, PS19 mice homozygous for APOE3 and APOE4 showed equivalent levels of phosphorylated tau burden, inflammation levels and ventricular volumes. Compared to these cohorts, PS19 mice homozygous for APOE2 showed lower induction of phosphorylation on selective epitopes, though the effect sizes were small and variable. In spite of this, the APOE2 cohort showed shorter lifespan relative to APOE3 homozygous mice. None of the cohorts accumulated appreciable levels of phosphorylated tau compartmentalized in the insoluble cell fraction. RNAseq analysis showed that the induction of immune gene expression was comparable across all the APOE genotypes in PS19 mice. Notably, the APOE4 homozygous mice showed additional induction of transcripts corresponding to the Alzheimer's disease-related plaque-induced gene signature. In human Alzheimer's disease brain tissues, we found no direct correlation between higher burden of phosphorylated tau and APOE4 genotype. As expected, there was a strong correlation between phosphorylated tau burden with amyloid deposition in APOE4-positive Alzheimer's disease cases. Overall, our results indicate that APOE3 genotype may confer some resilience to tauopathy, while APOE4 and APOE2 may act through multiple pathways to increase the pathogenicity in the context of tauopathy.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Humanos , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E3/genética , Longevidad/genética , Apolipoproteínas E/metabolismo , Tauopatías/genética , Tauopatías/metabolismo , Ratones Transgénicos , Genotipo
17.
J Phys Chem A ; 127(23): 4934-4939, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37265437

RESUMEN

2-Mercaptoimidazole (2MI) is related to natural ovothiols that are recognized as powerful radical scavengers. Yet, despite early reports of its potent antioxidant properties, 2MI received little attention. Specifically, its radical scavenging activity against typical free radicals like HO• and HOO• has not yet been studied in terms of its mechanism and kinetics. In this project, density functional theory (DFT) simulations were used to assess the antiradical activity of 2MI. Calculations indicate that 2MI can demonstrate anti-HO• activity in both lipid and aqueous environments (koverall of 1.05 × 1010 and 2.07 × 1010 M-1 s-1, respectively). The calculated kinetics is extremely close to the experimental data in water (pH = 7.0), resulting in a kcalculated/kexperimental ratio of 1.73, validating the accuracy of the computational method and its usefulness for assessing radical scavenging activity in silico. In lipid media, the HOO• radical scavenging activity of 2MI is faster than that of common typical natural scavengers such as ascorbic acid, Trolox, and trans-resveratrol; hence, 2MI is a powerful radical scavenger in nonpolar media.


Asunto(s)
Antioxidantes , Depuradores de Radicales Libres , Depuradores de Radicales Libres/química , Cinética , Antioxidantes/química , Agua/química , Teoría Cuántica , Lípidos/química
18.
RSC Adv ; 13(9): 6153-6159, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36814870

RESUMEN

Paederia scandens (Lour.) is a widely used medicinal herb in Vietnam, China, India, and Japan for the treatment of a variety of conditions, including toothache, chest pains, piles, and spleen inflammation. There is broad interest in identifying the composition of its extracts and confirming their numerous biological activities, including anti-nociceptive, antiviral, and anticancer properties. Two iridoid glucosides obtained from the MeOH extract of P. scandens, 6'-O-E-feruloylmonotropein (6-FMT) and 10'-O-E-feruloylmonotropein (10-FMT), are potential antioxidants based on their structure. In this study, the hydroperoxyl scavenging activity of 6-FMT and 10-FMT was examined in silico by using density functional theory. These FMTs are predicted to be weak antioxidants in non-polar environments, whereas a good HOO˙ scavenging activity is expected in polar environments (pH = 7.4) with k overall = 3.66 × 107 M-1 s-1 and 9.45 × 106 M-1 s-1, respectively. This activity is better than many common antioxidants such as trolox and nearly equivalent to ascorbic acid and resveratrol. The hydroperoxyl scavenging activity was exerted mainly by the di-anion form of FMTs in water at physiological pH following the single electron transfer mechanism. The results suggest that FMTs are promising natural antioxidants in aqueous physiological environments.

19.
Chemosphere ; 314: 137682, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586441

RESUMEN

Nicotine (NCT) is a prevalent and highly poisonous tobacco alkaloid found in wastewater discharge. Advanced oxidative processes (AOP) are radical interactions between harmful pollutants and ambient free radicals that, theoretically, result in less toxic compounds. For a better understanding of the chemical transformations and long-term environmental effects of toxic discharges, the study of these processes is crucial. Here, quantum chemical calculations are used to investigate the AOP of the NCT in aqueous and lipidic environments. It was found that NCT interacted with HO• in polar and nonpolar media, with an overall rate constant koverall = 106 - 1010 M-1 s-1. The computed kinetic data are reasonably accurate as seen by the comparison with the experimental rate constant in water (pH = 7.0), which results in a kcalculated/kexperimetal ratio of 1.4. The hydrogen transfer (C7, C9, C12)-single electron transfer pathways are the main mechanisms for the HO• + NCT reaction in pentyl ethanoate solvent to form the cations as the primary products of the two-step reaction. However, in aqueous environments, the degradation of NCT by HO• radicals increases with increasing pH levels. It is predicted that oxidation products are less toxic than nicotine itself, especially in an aqueous environment with a pH < 7.0.


Asunto(s)
Radical Hidroxilo , Contaminantes Químicos del Agua , Radical Hidroxilo/química , Nicotina , Oxidación-Reducción , Agua , Física , Cinética , Contaminantes Químicos del Agua/química
20.
ACS Omega ; 7(45): 41687-41695, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406494

RESUMEN

Nanosilica is a versatile nanomaterial suitable as, e.g., drug carriers in medicine, fillers in polymers, and fertilizer/pesticide carriers and potentially a bioavailable source of silicon in agriculture. The enhanced biological activity of nanosilica over quartz sand has been noted before; it is directly related to the altered physicochemical properties of the nanoparticles compared to those of the bulk material. Therefore, it is feasible to use nanosilica as a form of plant stimulant. Nanosilica synthesis is a relatively cheap routine process on the laboratory scale; however, it is not easily scalable. Largely for this reason, studies of nanosilica fertilizers are scarce. This study will focus on industrial-scale silica nanoparticle production and the application of nanosilica as a plant stimulant in maize. A variant of the sol-gel method is used to successfully synthesize nanosilica particles starting from silica sand. The resulting particles are in the size range of 16-37 nm with great purity. The potential of nanosilica as a plant stimulant is demonstrated with the increased quantity and quality of maize crops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA