Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMJ Open ; 14(3): e081833, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548357

RESUMEN

INTRODUCTION: Around 1 in 1000-2000 pregnancies are affected by a cancer diagnosis. Previous studies have shown that chemotherapy during pregnancy has reassuring cognitive and cardiac neonatal outcomes, and hence has been proposed as standard of care. However, although these children perform within normal ranges for their age, subtle differences have been identified. Given that chemotherapeutic compounds can cross the placenta, the possibility that prenatal chemotherapy exposure mutates the offspring's genome and/or epigenome, with potential deleterious effects later in life, urges to be investigated. METHODS AND ANALYSES: This multicentric observational study aims to collect cord blood, meconium and neonatal buccal cells at birth, as well as peripheral blood, buccal cells and urine from infants when 6, 18 and/or 36 months of age. Using bulk and single-cell approaches, we will compare samples from chemotherapy-treated pregnant patients with cancer, pregnant patients with cancer not treated with chemotherapy and healthy pregnant women. Potential chemotherapy-related newborn genomic and/or epigenomic alterations, such as single nucleotide variants, copy number variants and DNA-methylation alterations, will be identified in mononuclear and epithelial cells, isolated from blood, buccal swabs and urine. DNA from maternal peripheral blood and paternal buccal cells will be used to determine de novo somatic mutations in the neonatal blood and epithelial cells. Additionally, the accumulated exposure of the fetus, and biological effective dose of alkylating agents, will be assessed in meconium and cord blood via mass spectrometry approaches. ETHICS AND DISSEMINATION: The Ethics Committee Research of UZ/KU Leuven (EC Research) and the Medical Ethical Review Committee of University Medical Center Amsterdam have approved the study. Results of this study will be disseminated via presentations at (inter)national conferences, through peer-reviewed, open-access publications, via social media platforms aimed to inform patients and healthcare workers, and through the website of the International Network on Cancer, Infertility and Pregnancy (www.cancerinpregnancy.org).


Asunto(s)
Neoplasias , Efectos Tardíos de la Exposición Prenatal , Recién Nacido , Lactante , Niño , Embarazo , Humanos , Femenino , Epigenómica , Mucosa Bucal , Genómica , ADN , Neoplasias/tratamiento farmacológico , Neoplasias/genética
2.
Immunity ; 57(3): 541-558.e7, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442708

RESUMEN

Cancer patients often receive a combination of antibodies targeting programmed death-ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen-4 (CTLA4). We conducted a window-of-opportunity study in head and neck squamous cell carcinoma (HNSCC) to examine the contribution of anti-CTLA4 to anti-PD-L1 therapy. Single-cell profiling of on- versus pre-treatment biopsies identified T cell expansion as an early response marker. In tumors, anti-PD-L1 triggered the expansion of mostly CD8+ T cells, whereas combination therapy expanded both CD4+ and CD8+ T cells. Such CD4+ T cells exhibited an activated T helper 1 (Th1) phenotype. CD4+ and CD8+ T cells co-localized with and were surrounded by dendritic cells expressing T cell homing factors or antibody-producing plasma cells. T cell receptor tracing suggests that anti-CTLA4, but not anti-PD-L1, triggers the trafficking of CD4+ naive/central-memory T cells from tumor-draining lymph nodes (tdLNs), via blood, to the tumor wherein T cells acquire a Th1 phenotype. Thus, CD4+ T cell activation and recruitment from tdLNs are hallmarks of early response to anti-PD-L1 plus anti-CTLA4 in HNSCC.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Antígeno B7-H1/genética , Antígeno CTLA-4 , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Linfocitos T CD4-Positivos , Microambiente Tumoral
3.
Cell ; 187(1): 166-183.e25, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181739

RESUMEN

To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.


Asunto(s)
Melanoma , Humanos , Redes Reguladoras de Genes , Inmunoterapia , Melanocitos , Melanoma/tratamiento farmacológico , Melanoma/genética , Factor de Transcripción 4/genética , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA