Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Brain ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654513

RESUMEN

Memory clinic patients are a heterogeneous population representing various aetiologies of pathological aging. It is unknown if divergent spatiotemporal progression patterns of brain atrophy, as previously described in Alzheimer's disease (AD) patients, are prevalent and clinically meaningful in this group of older adults. To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaIn) algorithm to baseline structural MRI data from 813 participants enrolled in the DELCODE cohort (mean ± SD age = 70.67 ± 6.07 years, 52% females). Participants were cognitively unimpaired (CU; n = 285) or fulfilled diagnostic criteria for subjective cognitive decline (SCD; n = 342), mild cognitive impairment (MCI; n = 118), or dementia of the Alzheimer's type (n = 68). Atrophy subtypes were compared in baseline demographics, fluid AD biomarker levels, the Preclinical Alzheimer Cognitive Composite (PACC-5), as well as episodic memory and executive functioning. PACC-5 trajectories over up to 240 weeks were examined. To test if baseline atrophy subtype and stage predicted clinical trajectories before manifest cognitive impairment, we analysed PACC-5 trajectories and MCI conversion rates of CU and SCD participants. Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy first affected the medial temporal lobes, followed by further temporal and, finally, the remaining cortical regions. At baseline, this subtype was related to older age, more pathological AD biomarker levels, APOE ε4 carriership, and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside the temporal lobe with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also affected individuals with positive AD biomarkers and was associated with more generalised cognitive impairment. Limbic-predominant atrophy, in all and in only unimpaired participants, was linked to more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atrophy and increased the risk of MCI conversion. SuStaIn modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progression patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, both on the subject and group level, were excellent, indicating reliable performance in previously unseen data. The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for AD in applied settings. The implementation of atrophy subtype- and stage-specific end-points may increase the statistical power of pharmacological trials targeting early AD.

2.
Nat Rev Neurol ; 20(4): 232-244, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38429551

RESUMEN

Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity of Alzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-ß and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides , Tomografía de Emisión de Positrones , Biomarcadores/líquido cefalorraquídeo
3.
Nat Aging ; 4(5): 694-708, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38514824

RESUMEN

Biological staging of individuals with Alzheimer's disease (AD) may improve diagnostic and prognostic workup of dementia in clinical practice and the design of clinical trials. In this study, we used the Subtype and Stage Inference (SuStaIn) algorithm to establish a robust biological staging model for AD using cerebrospinal fluid (CSF) biomarkers. Our analysis involved 426 participants from BioFINDER-2 and was validated in 222 participants from the Knight Alzheimer Disease Research Center cohort. SuStaIn identified a singular biomarker sequence and revealed that five CSF biomarkers effectively constituted a reliable staging model (ordered: Aß42/40, pT217/T217, pT205/T205, MTBR-tau243 and non-phosphorylated mid-region tau). The CSF stages (0-5) demonstrated a correlation with increased abnormalities in other AD-related biomarkers, such as Aß-PET and tau-PET, and aligned with longitudinal biomarker changes reflective of AD progression. Higher CSF stages at baseline were associated with an elevated hazard ratio of clinical decline. This study highlights a common molecular pathway underlying AD pathophysiology across all patients, suggesting that a single CSF collection can accurately indicate the presence of AD pathologies and characterize the stage of disease progression. The proposed staging model has implications for enhancing diagnostic and prognostic assessments in both clinical practice and the design of clinical trials.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Proteínas tau , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico , Humanos , Biomarcadores/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Femenino , Masculino , Péptidos beta-Amiloides/líquido cefalorraquídeo , Anciano , Progresión de la Enfermedad , Fragmentos de Péptidos/líquido cefalorraquídeo , Algoritmos , Persona de Mediana Edad , Tomografía de Emisión de Positrones
4.
Transl Neurodegener ; 12(1): 57, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062485

RESUMEN

BACKGROUND: TDP-43 proteinopathies represent a spectrum of neurological disorders, anchored clinically on either end by amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). The ALS-FTD spectrum exhibits a diverse range of clinical presentations with overlapping phenotypes, highlighting its heterogeneity. This study was aimed to use disease progression modeling to identify novel data-driven spatial and temporal subtypes of brain atrophy and its progression in the ALS-FTD spectrum. METHODS: We used a data-driven procedure to identify 13 anatomic clusters of brain volume for 57 behavioral variant FTD (bvFTD; with either autopsy-confirmed TDP-43 or TDP-43 proteinopathy-associated genetic variants), 103 ALS, and 47 ALS-FTD patients with likely TDP-43. A Subtype and Stage Inference (SuStaIn) model was trained to identify subtypes of individuals along the ALS-FTD spectrum with distinct brain atrophy patterns, and we related subtypes and stages to clinical, genetic, and neuropathological features of disease. RESULTS: SuStaIn identified three novel subtypes: two disease subtypes with predominant brain atrophy in either prefrontal/somatomotor regions or limbic-related regions, and a normal-appearing group without obvious brain atrophy. The limbic-predominant subtype tended to present with more impaired cognition, higher frequencies of pathogenic variants in TBK1 and TARDBP genes, and a higher proportion of TDP-43 types B, E and C. In contrast, the prefrontal/somatomotor-predominant subtype had higher frequencies of pathogenic variants in C9orf72 and GRN genes and higher proportion of TDP-43 type A. The normal-appearing brain group showed higher frequency of ALS relative to ALS-FTD and bvFTD patients, higher cognitive capacity, higher proportion of lower motor neuron onset, milder motor symptoms, and lower frequencies of genetic pathogenic variants. The overall SuStaIn stages also correlated with evidence for clinical progression including longer disease duration, higher King's stage, and cognitive decline. Additionally, SuStaIn stages differed across clinical phenotypes, genotypes and types of TDP-43 pathology. CONCLUSIONS: Our findings suggest distinct neurodegenerative subtypes of disease along the ALS-FTD spectrum that can be identified in vivo, each with distinct brain atrophy, clinical, genetic and pathological patterns.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/genética , Enfermedades Neurodegenerativas/patología , Encéfalo/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Atrofia/genética , Atrofia/complicaciones , Atrofia/patología
5.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106128

RESUMEN

Lewy body (LB) disorders, characterized by the aggregation of misfolded α-synuclein proteins, exhibit notable clinical heterogeneity. This may be due to variations in accumulation patterns of LB neuropathology. By applying data-driven disease progression modelling to regional neuropathological LB density scores from 814 brain donors, we describe three inferred trajectories of LB pathology that were characterized by differing clinicopathological presentation and longitudinal antemortem clinical progression. Most donors (81.9%) showed earliest pathology in the olfactory bulb, followed by accumulation in either limbic (60.8%) or brainstem (21.1%) regions. The remaining donors (18.1%) exhibited the first abnormalities in brainstem regions. Early limbic pathology was associated with Alzheimer's disease-associated characteristics. Meanwhile, brainstem-first pathology was associated with progressive motor impairment and substantial LB pathology outside of the brain. Our data provides evidence for heterogeneity in the temporal spread of LB pathology, possibly explaining some of the clinical disparities observed in LBDs.

6.
Cell Rep ; 42(11): 113439, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37963017

RESUMEN

Human brain size changes dynamically through early development, peaks in adolescence, and varies up to 2-fold among adults. However, the molecular genetic underpinnings of interindividual variation in brain size remain unknown. Here, we leveraged postmortem brain RNA sequencing and measurements of brain weight (BW) in 2,531 individuals across three independent datasets to identify 928 genome-wide significant associations with BW. Genes associated with higher or lower BW showed distinct neurodevelopmental trajectories and spatial patterns that mapped onto functional and cellular axes of brain organization. Expression of BW genes was predictive of interspecies differences in brain size, and bioinformatic annotation revealed enrichment for neurogenesis and cell-cell communication. Genome-wide, transcriptome-wide, and phenome-wide association analyses linked BW gene sets to neuroimaging measurements of brain size and brain-related clinical traits. Cumulatively, these results represent a major step toward delineating the molecular pathways underlying human brain size variation in health and disease.


Asunto(s)
Encéfalo , Transcriptoma , Adulto , Humanos , Tamaño de los Órganos , Encéfalo/metabolismo , Fenotipo , Estudio de Asociación del Genoma Completo/métodos , Biología Molecular , Predisposición Genética a la Enfermedad
7.
Neurosci Biobehav Rev ; 154: 105421, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37802267

RESUMEN

Functional magnetic resonance imaging (fMRI) is increasingly used to non-invasively study the acute impact of psychedelics on the human brain. While fMRI is a promising tool for measuring brain function in response to psychedelics, it also has known methodological challenges. We conducted a systematic review of fMRI studies examining acute responses to experimentally administered psychedelics in order to identify convergent findings and characterize heterogeneity in the literature. We reviewed 91 full-text papers; these studies were notable for substantial heterogeneity in design, task, dosage, drug timing, and statistical approach. Data recycling was common, with 51 unique samples across 91 studies. Fifty-seven studies (54%) did not meet contemporary standards for Type I error correction or control of motion artifact. Psilocybin and LSD were consistently reported to moderate the connectivity architecture of the sensorimotor-association cortical axis. Studies also consistently reported that ketamine administration increased activation in the dorsomedial prefrontal cortex. Moving forward, use of best practices such as pre-registration, standardized image processing and statistical testing, and data sharing will be important in this rapidly developing field.


Asunto(s)
Alucinógenos , Ketamina , N-Metil-3,4-metilenodioxianfetamina , Humanos , Alucinógenos/farmacología , Ketamina/farmacología , N-Metil-3,4-metilenodioxianfetamina/farmacología , Psilocibina/farmacología , Encéfalo/diagnóstico por imagen
8.
Res Sq ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37609205

RESUMEN

Background: TDP-43 proteinopathies represents a spectrum of neurological disorders, anchored clinically on either end by amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). The ALS-FTD spectrum exhibits a diverse range of clinical presentations with overlapping phenotypes, highlighting its heterogeneity. This study aimed to use disease progression modeling to identify novel data-driven spatial and temporal subtypes of brain atrophy and its progression in the ALS-FTD spectrum. Methods: We used a data-driven procedure to identify 13 anatomic clusters of brain volumes for 57 behavioral variant FTD (bvFTD; with either autopsy-confirmed TDP-43 or TDP-43 proteinopathy-associated genetic variants), 103 ALS, and 47 ALS-FTD patients with likely TDP-43. A Subtype and Stage Inference (SuStaIn) model was trained to identify subtypes of individuals along the ALS-FTD spectrum with distinct brain atrophy patterns, and we related subtypes and stages to clinical, genetic, and neuropathological features of disease. Results: SuStaIn identified three novel subtypes: two disease subtypes with predominant brain atrophy either in prefrontal/somatomotor regions or limbic-related regions, and a normal-appearing group without obvious brain atrophy. The Limbic-predominant subtype tended to present with more impaired cognition, higher frequencies of pathogenic variants in TBK1 and TARDBP genes, and a higher proportion of TDP-43 type B, E and C. In contrast, the Prefrontal/Somatomotor-predominant subtype had higher frequencies of pathogenic variants in C9orf72 and GRN genes and higher proportion of TDP-43 type A. The normal-appearing brain group showed higher frequency of ALS relative to ALS-FTD and bvFTD patients, higher cognitive capacity, higher proportion of lower motor neuron onset, milder motor symptoms, and lower frequencies of genetic pathogenic variants. Overall SuStaIn stages also correlated with evidence for clinical progression including longer disease duration, higher King's stage, and cognitive decline. Additionally, SuStaIn stages differed across clinical phenotypes, genotypes and types of TDP-43 pathology. Conclusions: Our findings suggest distinct neurodegenerative subtypes of disease along the ALS-FTD spectrum that can be identified in vivo, each with distinct brain atrophy, clinical, genetic and pathological patterns.

9.
Nat Rev Neurosci ; 24(10): 620-639, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37620599

RESUMEN

Neurodegenerative diseases are the most common cause of dementia. Although their underlying molecular pathologies have been identified, there is substantial heterogeneity in the patterns of progressive brain alterations across and within these diseases. Recent advances in neuroimaging methods have revealed that pathological proteins accumulate along specific macroscale brain networks, implicating the network architecture of the brain in the system-level pathophysiology of neurodegenerative diseases. However, the extent to which 'network-based neurodegeneration' applies across the wide range of neurodegenerative disorders remains unclear. Here, we discuss the state-of-the-art of neuroimaging-based connectomics for the mapping and prediction of neurodegenerative processes. We review findings supporting brain networks as passive conduits through which pathological proteins spread. As an alternative view, we also discuss complementary work suggesting that network alterations actively modulate the spreading of pathological proteins between connected brain regions. We conclude this Perspective by proposing an integrative framework in which connectome-based models can be advanced along three dimensions of innovation: incorporating parameters that modulate propagation behaviour on the basis of measurable biological features; building patient-tailored models that use individual-level information and allowing model parameters to interact dynamically over time. We discuss promises and pitfalls of these strategies for improving disease insights and moving towards precision medicine.


Asunto(s)
Conectoma , Enfermedades Neurodegenerativas , Humanos , Medicina de Precisión , Encéfalo , Neuroimagen
10.
medRxiv ; 2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37503281

RESUMEN

Biological staging of individuals with Alzheimer's disease (AD) may improve diagnostic and prognostic work-up of dementia in clinical practice and the design of clinical trials. Here, we created a staging model using the Subtype and Stage Inference (SuStaIn) algorithm by evaluating cerebrospinal fluid (CSF) amyloid-ß (Aß) and tau biomarkers in 426 participants from BioFINDER-2, that represent the entire spectrum of AD. The model composition and main analyses were replicated in 222 participants from the Knight ADRC cohort. SuStaIn revealed in the two cohorts that the data was best explained by a single biomarker sequence (one subtype), and that five CSF biomarkers (ordered: Aß42/40, tau phosphorylation occupancies at the residues 217 and 205 [pT217/T217 and pT205/T205], microtubule-binding region of tau containing the residue 243 [MTBR-tau243], and total tau) were sufficient to create an accurate disease staging model. Increasing CSF stages (0-5) were associated with increased abnormality in other AD-related biomarkers, such as Aß- and tau-PET, and aligned with different phases of longitudinal biomarker changes consistent with current models of AD progression. Higher CSF stages at baseline were associated with higher hazard ratio of clinical decline. Our findings indicate that a common pathophysiologic molecular pathway develops across all AD patients, and that a single CSF collection is sufficient to reliably indicate the presence of both AD pathologies and the degree and stage of disease progression.

11.
Brain ; 146(12): 4935-4948, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37433038

RESUMEN

Amyloid-ß is thought to facilitate the spread of tau throughout the neocortex in Alzheimer's disease, though how this occurs is not well understood. This is because of the spatial discordance between amyloid-ß, which accumulates in the neocortex, and tau, which accumulates in the medial temporal lobe during ageing. There is evidence that in some cases amyloid-ß-independent tau spreads beyond the medial temporal lobe where it may interact with neocortical amyloid-ß. This suggests that there may be multiple distinct spatiotemporal subtypes of Alzheimer's-related protein aggregation, with potentially different demographic and genetic risk profiles. We investigated this hypothesis, applying data-driven disease progression subtyping models to post-mortem neuropathology and in vivo PET-based measures from two large observational studies: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Religious Orders Study and Rush Memory and Aging Project (ROSMAP). We consistently identified 'amyloid-first' and 'tau-first' subtypes using cross-sectional information from both studies. In the amyloid-first subtype, extensive neocortical amyloid-ß precedes the spread of tau beyond the medial temporal lobe, while in the tau-first subtype, mild tau accumulates in medial temporal and neocortical areas prior to interacting with amyloid-ß. As expected, we found a higher prevalence of the amyloid-first subtype among apolipoprotein E (APOE) ε4 allele carriers while the tau-first subtype was more common among APOE ε4 non-carriers. Within tau-first APOE ε4 carriers, we found an increased rate of amyloid-ß accumulation (via longitudinal amyloid PET), suggesting that this rare group may belong within the Alzheimer's disease continuum. We also found that tau-first APOE ε4 carriers had several fewer years of education than other groups, suggesting a role for modifiable risk factors in facilitating amyloid-ß-independent tau. Tau-first APOE ε4 non-carriers, in contrast, recapitulated many of the features of primary age-related tauopathy. The rate of longitudinal amyloid-ß and tau accumulation (both measured via PET) within this group did not differ from normal ageing, supporting the distinction of primary age-related tauopathy from Alzheimer's disease. We also found reduced longitudinal subtype consistency within tau-first APOE ε4 non-carriers, suggesting additional heterogeneity within this group. Our findings support the idea that amyloid-ß and tau may begin as independent processes in spatially disconnected regions, with widespread neocortical tau resulting from the local interaction of amyloid-ß and tau. The site of this interaction may be subtype-dependent: medial temporal lobe in amyloid-first, neocortex in tau-first. These insights into the dynamics of amyloid-ß and tau may inform research and clinical trials that target these pathologies.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Proteínas tau/metabolismo , Estudios Transversales , Péptidos beta-Amiloides/metabolismo , Amiloide , Tomografía de Emisión de Positrones
12.
JAMA Neurol ; 80(6): 614-623, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37155176

RESUMEN

Importance: Longitudinal tau positron emission tomography (PET) is a relevant outcome in clinical trials evaluating disease-modifying therapies in Alzheimer disease (AD). A key unanswered question is whether the use of participant-specific (individualized) regions of interest (ROIs) is superior to conventional approaches where the same ROI (group-level) is used for each participant. Objective: To compare group- and participant-level ROIs in participants at different stages of the AD clinical continuum in terms of annual percentage change in tau-PET standardized uptake value ratio (SUVR) and sample size requirements. Design, Setting, and Participants: This was a longitudinal cohort study with consecutive participant enrollment between September 18, 2017, and November 15, 2021. Included in the analysis were participants with mild cognitive impairment and AD dementia from the prospective and longitudinal Swedish Biomarkers For Identifying Neurodegenerative Disorders Early and Reliably 2 (BioFINDER-2) study; in addition, a validation sample (the AVID 05e, Expedition-3, Alzheimer's Disease Neuroimaging Initiative [ADNI], and BioFINDER-1 study cohorts) was also included. Exposures: Tau PET (BioFINDER-2, [18F]RO948; validation sample, [18F]flortaucipir), 7 group-level (5 data-driven stages, meta-temporal, whole brain), and 5 individualized ROIs. Main Outcomes and Measures: Annual percentage change in tau-PET SUVR across ROIs. Sample size requirements in simulated clinical trials using tau PET as an outcome were also calculated. Results: A total of 215 participants (mean [SD] age, 71.4 (7.5) years; 111 male [51.6%]) from the BioFINDER-2 study were included in this analysis: 97 amyloid-ß (Aß)-positive cognitively unimpaired (CU) individuals, 77 with Aß-positive mild cognitive impairment (MCI), and 41 with AD dementia. In the validation sample were 137 Aß-positive CU participants, 144 with Aß-positive MCI, and 125 with AD dementia. Mean (SD) follow-up time was 1.8 (0.3) years. Using group-level ROIs, the largest annual percentage increase in tau-PET SUVR in Aß-positive CU individuals was seen in a composite ROI combining the entorhinal cortex, hippocampus, and amygdala (4.29%; 95% CI, 3.42%-5.16%). In individuals with Aß-positive MCI, the greatest change was seen in the temporal cortical regions (5.82%; 95% CI, 4.67%-6.97%), whereas in those with AD dementia, the greatest change was seen in the parietal regions (5.22%; 95% CI, 3.95%-6.49%). Significantly higher estimates of annual percentage change were found using several of the participant-specific ROIs. Importantly, the simplest participant-specific approach, where change in tau PET was calculated in an ROI that best matched the participant's data-driven disease stage, performed best in all 3 subgroups. For the power analysis, sample size reductions for the participant-specific ROIs ranged from 15.94% (95% CI, 8.14%-23.74%) to 72.10% (95% CI, 67.10%-77.20%) compared with the best-performing group-level ROIs. Findings were replicated using [18F]flortaucipir. Conclusions and Relevance: Finding suggest that certain individualized ROIs carry an advantage over group-level ROIs for assessing longitudinal tau changes and increase the power to detect treatment effects in AD clinical trials using longitudinal tau PET as an outcome.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Masculino , Anciano , Proteínas tau/metabolismo , Estudios Longitudinales , Estudios Prospectivos , Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo , Tomografía de Emisión de Positrones/métodos , Biomarcadores
13.
Brain ; 146(7): 2975-2988, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37150879

RESUMEN

TAR DNA-binding protein-43 (TDP-43) accumulation is the primary pathology underlying several neurodegenerative diseases. Charting the progression and heterogeneity of TDP-43 accumulation is necessary to better characterize TDP-43 proteinopathies, but current TDP-43 staging systems are heuristic and assume each syndrome is homogeneous. Here, we use data-driven disease progression modelling to derive a fine-grained empirical staging system for the classification and differentiation of frontotemporal lobar degeneration due to TDP-43 (FTLD-TDP, n = 126), amyotrophic lateral sclerosis (ALS, n = 141) and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) with and without Alzheimer's disease (n = 304). The data-driven staging of ALS and FTLD-TDP complement and extend previously described human-defined staging schema for ALS and behavioural variant frontotemporal dementia. In LATE-NC individuals, progression along data-driven stages was positively associated with age, but negatively associated with age in individuals with FTLD-TDP. Using only regional TDP-43 severity, our data driven model distinguished individuals diagnosed with ALS, FTLD-TDP or LATE-NC with a cross-validated accuracy of 85.9%, with misclassifications associated with mixed pathological diagnosis, age and genetic mutations. Adding age and SuStaIn stage to this model increased accuracy to 92.3%. Our model differentiates LATE-NC from FTLD-TDP, though some overlap was observed between late-stage LATE-NC and early-stage FTLD-TDP. We further tested for the presence of subtypes with distinct regional TDP-43 progression patterns within each diagnostic group, identifying two distinct cortical-predominant and brainstem-predominant subtypes within FTLD-TDP and a further two subcortical-predominant and corticolimbic-predominant subtypes within ALS. The FTLD-TDP subtypes exhibited differing proportions of TDP-43 type, while there was a trend for age differing between ALS subtypes. Interestingly, a negative relationship between age and SuStaIn stage was seen in the brainstem/subcortical-predominant subtype of each proteinopathy. No subtypes were observed for the LATE-NC group, despite aggregating individuals with and without Alzheimer's disease and a larger sample size for this group. Overall, we provide an empirical pathological TDP-43 staging system for ALS, FTLD-TDP and LATE-NC, which yielded accurate classification. We further demonstrate that there is substantial heterogeneity amongst ALS and FTLD-TDP progression patterns that warrants further investigation in larger cross-cohort studies.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Proteinopatías TDP-43 , Humanos , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/patología , Enfermedad de Alzheimer/patología , Proteinopatías TDP-43/patología , Degeneración Lobar Frontotemporal/patología , Proteínas de Unión al ADN/genética
14.
medRxiv ; 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36778217

RESUMEN

TAR DNA-binding protein-43 (TDP-43) accumulation is the primary pathology underlying several neurodegenerative diseases. Charting the progression and heterogeneity of TDP-43 accumulation is necessary to better characterise TDP-43 proteinopathies, but current TDP-43 staging systems are heuristic and assume each syndrome is homogeneous. Here, we use data-driven disease progression modelling to derive a fine-grained empirical staging system for the classification and differentiation of frontotemporal lobar degeneration due to TDP-43 (FTLD-TDP, n=126), amyotrophic lateral sclerosis (ALS, n=141) and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) with and without Alzheimer’s disease (n=304). The data-driven staging of ALS and FTLD-TDP complement and extend previously described human-defined staging schema for ALS and behavioural variant frontotemporal dementia. In LATE-NC individuals, progression along data-driven stages was positively associated with age, but negatively associated with age in individuals with FTLD-TDP. Using only regional TDP-43 severity, our data driven model distinguished individuals diagnosed with ALS, FTLD-TDP or LATE-NC with a cross-validated accuracy of 85.9%, with misclassifications associated with mixed pathological diagnosis, age and genetic mutations. Adding age and SuStaIn stage to this model increased accuracy to 92.3%. Our model differentiates LATE-NC from FTLD-TDP, though some overlap was observed between late-stage LATE-NC and early-stage FTLD-TDP. We further tested for the presence of subtypes with distinct regional TDP-43 progression patterns within each diagnostic group, identifying two distinct cortical-predominant and brainstem-predominant subtypes within FTLD-TDP and a further two subcortical-predominant and corticolimbic-predominant subtypes within ALS. The FTLD-TDP subtypes exhibited differing proportions of TDP-43 type, while there was a trend for age differing between ALS subtypes. Interestingly, a negative relationship between age and SuStaIn stage was seen in the brainstem/subcortical-predominant subtype of each proteinopathy. No subtypes were observed for the LATE-NC group, despite aggregating AD+ and AD-individuals and a larger sample size for this group. Overall, we provide an empirical pathological TDP-43 staging system for ALS, FTLD-TDP and LATE-NC, which yielded accurate classification. We further demonstrate that there is substantial heterogeneity amongst ALS and FTLD-TDP progression patterns that warrants further investigation in larger cross-cohort studies.

15.
Neuroimage ; 263: 119609, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36064140

RESUMEN

The Brain Imaging Data Structure (BIDS) is a specification accompanied by a software ecosystem that was designed to create reproducible and automated workflows for processing neuroimaging data. BIDS Apps flexibly build workflows based on the metadata detected in a dataset. However, even BIDS valid metadata can include incorrect values or omissions that result in inconsistent processing across sessions. Additionally, in large-scale, heterogeneous neuroimaging datasets, hidden variability in metadata is difficult to detect and classify. To address these challenges, we created a Python-based software package titled "Curation of BIDS" (CuBIDS), which provides an intuitive workflow that helps users validate and manage the curation of their neuroimaging datasets. CuBIDS includes a robust implementation of BIDS validation that scales to large samples and incorporates DataLad--a version control software package for data--as an optional dependency to ensure reproducibility and provenance tracking throughout the entire curation process. CuBIDS provides tools to help users perform quality control on their images' metadata and identify unique combinations of imaging parameters. Users can then execute BIDS Apps on a subset of participants that represent the full range of acquisition parameters that are present, accelerating pipeline testing on large datasets.


Asunto(s)
Ecosistema , Programas Informáticos , Humanos , Flujo de Trabajo , Reproducibilidad de los Resultados , Neuroimagen/métodos
16.
Nat Commun ; 13(1): 4682, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948562

RESUMEN

Numerous brain disorders demonstrate structural brain abnormalities, which are thought to arise from molecular perturbations or connectome miswiring. The unique and shared contributions of these molecular and connectomic vulnerabilities to brain disorders remain unknown, and has yet to be studied in a single multi-disorder framework. Using MRI morphometry from the ENIGMA consortium, we construct maps of cortical abnormalities for thirteen neurodevelopmental, neurological, and psychiatric disorders from N = 21,000 participants and N = 26,000 controls, collected using a harmonised processing protocol. We systematically compare cortical maps to multiple micro-architectural measures, including gene expression, neurotransmitter density, metabolism, and myelination (molecular vulnerability), as well as global connectomic measures including number of connections, centrality, and connection diversity (connectomic vulnerability). We find a relationship between molecular vulnerability and white-matter architecture that drives cortical disorder profiles. Local attributes, particularly neurotransmitter receptor profiles, constitute the best predictors of both disorder-specific cortical morphology and cross-disorder similarity. Finally, we find that cross-disorder abnormalities are consistently subtended by a small subset of network epicentres in bilateral sensory-motor, inferior temporal lobe, precuneus, and superior parietal cortex. Collectively, our results highlight how local molecular attributes and global connectivity jointly shape cross-disorder cortical abnormalities.


Asunto(s)
Encefalopatías , Conectoma , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas
17.
Biol Psychiatry ; 92(12): 973-983, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35927072

RESUMEN

BACKGROUND: The spatial layout of large-scale functional brain networks differs between individuals and is particularly variable in the association cortex, implicated in a broad range of psychiatric disorders. However, it remains unknown whether this variation in functional topography is related to major dimensions of psychopathology in youth. METHODS: The authors studied 790 youths ages 8 to 23 years who had 27 minutes of high-quality functional magnetic resonance imaging data as part of the Philadelphia Neurodevelopmental Cohort. Four correlated dimensions were estimated using a confirmatory correlated traits factor analysis on 112 item-level clinical symptoms, and one overall psychopathology factor with 4 orthogonal dimensions were extracted using a confirmatory factor analysis. Spatially regularized nonnegative matrix factorization was used to identify 17 individual-specific functional networks for each participant. Partial least square regression with split-half cross-validation was conducted to evaluate to what extent the topography of personalized functional networks encodes major dimensions of psychopathology. RESULTS: Personalized functional network topography significantly predicted unseen individuals' major dimensions of psychopathology, including fear, psychosis, externalizing, and anxious-misery. Reduced representation of association networks was among the most important features for the prediction of all 4 dimensions. Further analysis revealed that personalized functional network topography predicted overall psychopathology (r = 0.16, permutation testing p < .001), which drove prediction of the 4 correlated dimensions. CONCLUSIONS: These results suggest that individual differences in functional network topography in association networks is related to overall psychopathology in youth. Such results underscore the importance of considering functional neuroanatomy for personalized diagnostics and therapeutics in psychiatry.


Asunto(s)
Individualidad , Trastornos Mentales , Adolescente , Humanos , Niño , Adulto Joven , Adulto , Psicopatología , Corteza Cerebral , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
18.
Alzheimers Res Ther ; 14(1): 102, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879736

RESUMEN

BACKGROUND: Cognitive reserve and resilience are terms used to explain interindividual variability in maintenance of cognitive health in response to adverse factors, such as brain pathology in the context of aging or neurodegenerative disorders. There is substantial interest in identifying tractable substrates of resilience to potentially leverage this phenomenon into intervention strategies. One way of operationalizing cognitive resilience that has gained popularity is the residual method: regressing cognition on an adverse factor and using the residual as a measure of resilience. This method is attractive because it provides a statistical approach that is an intuitive match to the reserve/resilience conceptual framework. However, due to statistical properties of the regression equation, the residual approach has qualities that complicate its interpretation as an index of resilience and make it statistically inappropriate in certain circumstances. METHODS AND RESULTS: We describe statistical properties of the regression equation to illustrate why the residual is highly correlated with the cognitive score from which it was derived. Using both simulations and real data, we model common applications of the approach by creating a residual score (global cognition residualized for hippocampal volume) in individuals along the AD spectrum. We demonstrate that in most real-life scenarios, the residual measure of cognitive resilience is highly correlated with cognition, and the degree of this correlation depends on the initial relationship between the adverse factor and cognition. Subsequently, any association between this resilience metric and an external variable may actually be driven by cognition, rather than by an operationalized measure of resilience. We then assess several strategies proposed as potential solutions to this problem, such as including both the residual and original cognitive measure in a model. However, we conclude these solutions may be insufficient, and we instead recommend against "pre-regression" strategies altogether in favor of using statistical moderation (e.g., interactions) to quantify resilience. CONCLUSIONS: Caution should be taken in the use and interpretation of the residual-based method of cognitive resilience. Rather than identifying resilient individuals, we encourage building more complete models of cognition to better identify the specific adverse and protective factors that influence cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Reserva Cognitiva , Enfermedad de Alzheimer/patología , Encéfalo/patología , Cognición/fisiología , Disfunción Cognitiva/patología , Reserva Cognitiva/fisiología , Progresión de la Enfermedad , Humanos
19.
Brain Commun ; 4(3): fcac085, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35602652

RESUMEN

Amyloid-beta deposition is one of the hallmark pathologies in both sporadic Alzheimer's disease and autosomal-dominant Alzheimer's disease, the latter of which is caused by mutations in genes involved in amyloid-beta processing. Despite amyloid-beta deposition being a centrepiece to both sporadic Alzheimer's disease and autosomal-dominant Alzheimer's disease, some differences between these Alzheimer's disease subtypes have been observed with respect to the spatial pattern of amyloid-beta. Previous work has shown that the spatial pattern of amyloid-beta in individuals spanning the sporadic Alzheimer's disease spectrum can be reproduced with high accuracy using an epidemic spreading model which simulates the diffusion of amyloid-beta across neuronal connections and is constrained by individual rates of amyloid-beta production and clearance. However, it has not been investigated whether amyloid-beta deposition in the rarer autosomal-dominant Alzheimer's disease can be modelled in the same way, and if so, how congruent the spreading patterns of amyloid-beta across sporadic Alzheimer's disease and autosomal-dominant Alzheimer's disease are. We leverage the epidemic spreading model as a data-driven approach to probe individual-level variation in the spreading patterns of amyloid-beta across three different large-scale imaging datasets (2 sporadic Alzheimer's disease, 1 autosomal-dominant Alzheimer's disease). We applied the epidemic spreading model separately to the Alzheimer's Disease Neuroimaging initiative (n = 737), the Open Access Series of Imaging Studies (n = 510) and the Dominantly Inherited Alzheimer's Network (n = 249), the latter two of which were processed using an identical pipeline. We assessed inter- and intra-individual model performance in each dataset separately and further identified the most likely subject-specific epicentre of amyloid-beta spread. Using epicentres defined in previous work in sporadic Alzheimer's disease, the epidemic spreading model provided moderate prediction of the regional pattern of amyloid-beta deposition across all three datasets. We further find that, whilst the most likely epicentre for most amyloid-beta-positive subjects overlaps with the default mode network, 13% of autosomal-dominant Alzheimer's disease individuals were best characterized by a striatal origin of amyloid-beta spread. These subjects were also distinguished by being younger than autosomal-dominant Alzheimer's disease subjects with a default mode network amyloid-beta origin, despite having a similar estimated age of symptom onset. Together, our results suggest that most autosomal-dominant Alzheimer's disease patients express amyloid-beta spreading patterns similar to those of sporadic Alzheimer's disease, but that there may be a subset of autosomal-dominant Alzheimer's disease patients with a separate, striatal phenotype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...