Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 29(Pt 3): 916-927, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35511025

RESUMEN

Tofu is a toolkit for processing large amounts of images and for tomographic reconstruction. Complex image processing tasks are organized as workflows of individual processing steps. The toolkit is able to reconstruct parallel and cone beam as well as tomographic and laminographic geometries. Many pre- and post-processing algorithms needed for high-quality 3D reconstruction are available, e.g. phase retrieval, ring removal and de-noising. Tofu is optimized for stand-alone GPU workstations on which it achieves reconstruction speed comparable with costly CPU clusters. It automatically utilizes all GPUs in the system and generates 3D reconstruction code with minimal number of instructions given the input geometry (parallel/cone beam, tomography/laminography), hence yielding optimal run-time performance. In order to improve accessibility for researchers with no previous knowledge of programming, tofu contains graphical user interfaces for both optimization of 3D reconstruction parameters and batch processing of data with pre-configured workflows for typical computed tomography reconstruction. The toolkit is open source and extensive documentation is available for both end-users and developers. Thanks to the mentioned features, tofu is suitable for both expert users with specialized image processing needs (e.g. when dealing with data from custom-built computed tomography scanners) and for application-specific end-users who just need to reconstruct their data on off-the-shelf hardware.


Asunto(s)
Alimentos de Soja , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Tomografía , Tomografía Computarizada por Rayos X
2.
Nat Commun ; 9(1): 3325, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30154438

RESUMEN

About 50% of all animal species are considered parasites. The linkage of species diversity to a parasitic lifestyle is especially evident in the insect order Hymenoptera. However, fossil evidence for host-parasitoid interactions is extremely rare, rendering hypotheses on the evolution of parasitism assumptive. Here, using high-throughput synchrotron X-ray microtomography, we examine 1510 phosphatized fly pupae from the Paleogene of France and identify 55 parasitation events by four wasp species, providing morphological and ecological data. All species developed as solitary endoparasitoids inside their hosts and exhibit different morphological adaptations for exploiting the same hosts in one habitat. Our results allow systematic and ecological placement of four distinct endoparasitoids in the Paleogene and highlight the need to investigate ecological data preserved in the fossil record.


Asunto(s)
Adaptación Fisiológica , Dípteros/parasitología , Fósiles/diagnóstico por imagen , Interacciones Huésped-Parásitos/fisiología , Avispas/fisiología , Animales , Evolución Biológica , Francia , Filogenia , Pupa/parasitología , Microtomografía por Rayos X
3.
J Synchrotron Radiat ; 24(Pt 6): 1283-1295, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091072

RESUMEN

An open-source framework for conducting a broad range of virtual X-ray imaging experiments, syris, is presented. The simulated wavefield created by a source propagates through an arbitrary number of objects until it reaches a detector. The objects in the light path and the source are time-dependent, which enables simulations of dynamic experiments, e.g. four-dimensional time-resolved tomography and laminography. The high-level interface of syris is written in Python and its modularity makes the framework very flexible. The computationally demanding parts behind this interface are implemented in OpenCL, which enables fast calculations on modern graphics processing units. The combination of flexibility and speed opens new possibilities for studying novel imaging methods and systematic search of optimal combinations of measurement conditions and data processing parameters. This can help to increase the success rates and efficiency of valuable synchrotron beam time. To demonstrate the capabilities of the framework, various experiments have been simulated and compared with real data. To show the use case of measurement and data processing parameter optimization based on simulation, a virtual counterpart of a high-speed radiography experiment was created and the simulated data were used to select a suitable motion estimation algorithm; one of its parameters was optimized in order to achieve the best motion estimation accuracy when applied on the real data. syris was also used to simulate tomographic data sets under various imaging conditions which impact the tomographic reconstruction accuracy, and it is shown how the accuracy may guide the selection of imaging conditions for particular use cases.

4.
J Synchrotron Radiat ; 23(Pt 5): 1254-63, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27577784

RESUMEN

Real-time processing of X-ray image data acquired at synchrotron radiation facilities allows for smart high-speed experiments. This includes workflows covering parameterized and image-based feedback-driven control up to the final storage of raw and processed data. Nevertheless, there is presently no system that supports an efficient construction of such experiment workflows in a scalable way. Thus, here an architecture based on a high-level control system that manages low-level data acquisition, data processing and device changes is described. This system is suitable for routine as well as prototypical experiments, and provides specialized building blocks to conduct four-dimensional in situ, in vivo and operando tomography and laminography.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...