Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835301

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia and may contribute to 60-70% of cases. Worldwide, around 50 million people suffer from dementia and the prediction is that the number will more than triple by 2050, as the population ages. Extracellular protein aggregation and plaque deposition as well as accumulation of intracellular neurofibrillary tangles, all leading to neurodegeneration, are the hallmarks of brains with Alzheimer's disease. Therapeutic strategies including active and passive immunizations have been widely explored in the last two decades. Several compounds have shown promising results in many AD animal models. To date, only symptomatic treatments are available and because of the alarming epidemiological data, novel therapeutic strategies to prevent, mitigate, or delay the onset of AD are required. In this mini-review, we focus on our understanding of AD pathobiology and discuss current active and passive immunomodulating therapies targeting amyloid-ß protein.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Inmunoterapia , Animales , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Inmunoterapia/métodos , Ovillos Neurofibrilares/metabolismo , Placa Amiloide/metabolismo , Humanos , Modelos Animales de Enfermedad
2.
Front Immunol ; 13: 864718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784292

RESUMEN

mRNA based vaccines against COVID-19 have proven most successful at keeping SARS-CoV-2 pandemic at bay in many countries. Recently, there is an increased interest in heterologous prime-boost vaccination strategies for COVID-19 to maintain antibody responses for the control of continuously emerging SARS-CoV-2 variants of concern (VoCs) and to overcome other obstacles such as supply shortage, costs and reduced safety issues or inadequatly induced immune-responses. In this study, we investigated the antibody responses induced by heterologous prime-boost with vaccines based on mRNA and virus-like particles (VLPs). The VLP-based mCuMVTT-RBM vaccine candidate and the approved mRNA-1273 vaccine were used for this purpose. We find that homologous prime boost regimens with either mRNA or VLP induced high levels of high avidity antibodies. Optimal antibody responses were, however, induced by heterologous regimens both for priming with mRNA and boosting with VLP and vice versa, priming with VLP and boosting with mRNA. Thus, heterologous prime boost strategies may be able to optimize efficacy and economics of novel vaccine strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacuna nCoV-2019 mRNA-1273 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina G , ARN Mensajero/genética , SARS-CoV-2/genética
3.
Vaccines (Basel) ; 10(5)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35632499

RESUMEN

In this report, we mechanistically reveal how the Variant of Concern (VOC) SARS-CoV-2 Omicron (B.1.1.529) escapes neutralizing antibody responses, by physio-chemical characterization of this variant in comparison to the wild-type Wuhan and the Delta variant (B.1.617.2). Convalescent sera, as well as sera obtained from participants who received two or three doses of mRNA vaccines (Moderna-mRNA-1273® or Pfizer-BNT162b2®), were used for comparison in this study. Our data demonstrate that both Delta, as well as Omicron variants, exhibit a higher affinity for the receptor ACE2, facilitating infection and causing antibody escape by receptor affinity (affinity escape), due to the reduced ability of antibodies to compete with RBD-receptor interaction and virus neutralization. In contrast, only Omicron but not the Delta variant escaped antibody recognition, most likely because only Omicron exhibits the mutation at E484A, a position associated with reduced recognition, resulting in further reduced neutralization (specificity escape). Nevertheless, the immunizations with RNA-based vaccines resulted in marked viral neutralization in vitro for all strains, compatible with the fact that Omicron is still largely susceptible to vaccination-induced antibodies, despite affinity- and specificity escape.

4.
Allergy ; 77(8): 2446-2458, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35403221

RESUMEN

BACKGROUND: The highly contagious SARS-CoV-2 is mainly transmitted by respiratory droplets and aerosols. Consequently, people are required to wear masks and maintain a social distance to avoid spreading of the virus. Despite the success of the commercially available vaccines, the virus is still uncontained globally. Given the tropism of SARS-CoV-2, a mucosal immune reaction would help to reduce viral shedding and transmission locally. Only seven out of hundreds of ongoing clinical trials are testing the intranasal delivery of a vaccine against COVID-19. METHODS: In the current study, we evaluated the immunogenicity of a traditional vaccine platform based on virus-like particles (VLPs) displaying RBD of SARS-CoV-2 for intranasal administration in a murine model. The candidate vaccine platform, CuMVTT -RBD, has been optimized to incorporate a universal T helper cell epitope derived from tetanus-toxin and is self-adjuvanted with TLR7/8 ligands. RESULTS: CuMVTT -RBD vaccine elicited a strong systemic RBD- and spike-IgG and IgA antibodies of high avidity. Local immune response was assessed, and our results demonstrate a strong mucosal antibody and plasma cell production in lung tissue. Furthermore, the induced systemic antibodies could efficiently recognize and neutralize different variants of concern (VOCs). CONCLUSION: Our data demonstrate that intranasal administration of CuMVTT -RBD induces a protective systemic and local specific antibody response against SARS-CoV-2 and its VOCs.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunas de Partículas Similares a Virus , Administración Intranasal , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Humanos , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de Partículas Similares a Virus/inmunología
5.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35269805

RESUMEN

Intravenous (IV) iron nanoparticle preparations are widely used to treat iron deficiency. The mechanism of mononuclear phagocyte system-mediated clearance of IV iron nanoparticles is unknown. The early uptake and homeostasis of iron after injection of ferric carboxymaltose (FCM) in mice was studied. An increase in serum iron was observed at 2.5 h followed by a return to baseline by 24 h. An increase in circulating monocytes was observed, particularly Ly6Chi and Ly6Clow. FCM was also associated with a time-dependent decrease in liver Kupffer cells (KCs) and increase in liver monocytes. The increase in liver monocytes suggests an influx of iron-rich blood monocytes, while some KCs underwent apoptosis. Adoptive transfer experiments demonstrated that following liver infiltration, blood monocytes differentiated to KCs. KCs were also critical for IV iron uptake and biodegradation. Indeed, anti-Colony Stimulating Factor 1 Receptor (CSF1R)-mediated depletion of KCs resulted in elevated serum iron levels and impaired iron uptake by the liver. Gene expression profiling indicated that C-C chemokine receptor type 5 (CCR5) might be involved in monocyte recruitment to the liver, confirmed by pharmaceutical inhibition of CCR5. Liver KCs play a pivotal role in the clearance and storage of IV iron and KCs appear to be supported by the expanded blood monocyte population.


Asunto(s)
Macrófagos del Hígado , Nanopartículas , Animales , Carbohidratos , Hierro/metabolismo , Macrófagos del Hígado/metabolismo , Hígado/metabolismo , Ratones , Monocitos/metabolismo
6.
Allergy ; 77(1): 243-257, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34496033

RESUMEN

BACKGROUND: SARS-CoV-2 caused one of the most devastating pandemics in the recent history of mankind. Due to various countermeasures, including lock-downs, wearing masks, and increased hygiene, the virus has been controlled in some parts of the world. More recently, the availability of vaccines, based on RNA or adenoviruses, has greatly added to our ability to keep the virus at bay; again, however, in some parts of the world only. While available vaccines are effective, it would be desirable to also have more classical vaccines at hand for the future. Key feature of vaccines for long-term control of SARS-CoV-2 would be inexpensive production at large scale, ability to make multiple booster injections, and long-term stability at 4℃. METHODS: Here, we describe such a vaccine candidate, consisting of the SARS-CoV-2 receptor-binding motif (RBM) grafted genetically onto the surface of the immunologically optimized cucumber mosaic virus, called CuMVTT -RBM. RESULTS: Using bacterial fermentation and continuous flow centrifugation for purification, the yield of the production process is estimated to be >2.5 million doses per 1000-litre fermenter run. We demonstrate that the candidate vaccine is highly immunogenic in mice and rabbits and induces more high avidity antibodies compared to convalescent human sera. The induced antibodies are more cross-reactive to mutant RBDs of variants of concern (VoC). Furthermore, antibody responses are neutralizing and long-lived. In addition, the vaccine candidate was stable for at least 14 months at 4℃. CONCLUSION: Thus, the here presented VLP-based vaccine may be a good candidate for use as conventional vaccine in the long term.


Asunto(s)
COVID-19 , Vacunas de Partículas Similares a Virus , Animales , Anticuerpos Neutralizantes , Formación de Anticuerpos , Vacunas contra la COVID-19 , Control de Enfermedades Transmisibles , Humanos , Ratones , Conejos , SARS-CoV-2
7.
Vaccines (Basel) ; 9(11)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34835247

RESUMEN

Type 2 Diabetes Mellitus (T2DM) is a chronic progressive disease, defined by insulin resistance and insufficient insulin secretion to maintain normoglycemia. Amyloidogenic aggregates are a hallmark of T2DM patients; they are cytotoxic for the insulin producing ß-cells, and cause inflammasome-dependent secretion of IL-1ß. To avoid the associated ß-cell loss and inflammation in advanced stage T2DM, we developed a novel monoclonal therapy targeting the major component of aggregates, islet amyloid polypeptide (IAPP). The here described monoclonal antibody (mAb) m81, specific for oligomeric and fibrils, but not for soluble free IAPP, is able to prevent oligomer growth and aggregate formation in vitro, and blocks islet inflammation and disease progression in vivo. Collectively, our data show that blocking fibril formation and prevention of new amyloidogenic aggregates by monoclonal antibody therapy may be a potential therapy for T2DM.

8.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925597

RESUMEN

Iron is a critical metal for several vital biological processes. Most of the body's iron is bound to hemoglobin in erythrocytes. Iron from senescent red blood cells is recycled by macrophages in the spleen, liver and bone marrow. Dietary iron is taken up by the divalent metal transporter 1 (DMT1) in enterocytes and transported to portal blood via ferroportin (FPN), where it is bound to transferrin and taken up by hepatocytes, macrophages and bone marrow cells via transferrin receptor 1 (TfR1). While most of the physiologically active iron is bound hemoglobin, the major storage of most iron occurs in the liver in a ferritin-bound fashion. In response to an increased iron load, hepatocytes secrete the peptide hormone hepcidin, which binds to and induces internalization and degradation of the iron transporter FPN, thus controlling the amount of iron released from the cells into the blood. This review summarizes the key mechanisms and players involved in cellular and systemic iron regulation.


Asunto(s)
Hierro/metabolismo , Hierro/fisiología , Animales , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Enterocitos/metabolismo , Ferritinas/metabolismo , Hemoglobinas/metabolismo , Hepatocitos/metabolismo , Humanos , Hierro de la Dieta/metabolismo , Hígado/metabolismo , Receptores de Transferrina/metabolismo , Bazo/metabolismo , Transferrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...