Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38254698

RESUMEN

In general, females present with stronger immune responses than males, but scarce data are available on sex-specific differences in immunometabolism. In this study, we characterized porcine peripheral blood mononuclear cell (PBMC) and granulocyte energy metabolism using a Bayesian 13C-metabolic flux analysis, which allowed precise determination of the glycolytic, pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA) fluxes, together with an assessment of the superoxide anion radical (O2•-) production and mitochondrial O2 consumption. A principal component analysis allowed for identifying the cell type-specific patterns of metabolic plasticity. PBMCs displayed higher TCA cycle activity, especially glutamine-derived aspartate biosynthesis, which was directly related to mitochondrial respiratory activity and inversely related to O2•- production. In contrast, the granulocytes mainly utilized glucose via glycolysis, which was coupled to oxidative PPP utilization and O2•- production rates. The granulocytes of the males had higher oxidative PPP fluxes compared to the females, while the PBMCs of the females displayed higher non-oxidative PPP fluxes compared to the males associated with the T helper cell (CD3+CD4+) subpopulation of PBMCs. The observed sex-specific differences were not directly attributable to sex steroid plasma levels, but we detected an inverse correlation between testosterone and aldosterone plasma levels and showed that aldosterone levels were related with non-oxidative PPP fluxes of both cell types.


Asunto(s)
Leucocitos Mononucleares , Vía de Pentosa Fosfato , Femenino , Masculino , Porcinos , Animales , Aldosterona , Teorema de Bayes , Análisis de Flujos Metabólicos , Caracteres Sexuales
2.
Front Immunol ; 14: 1125594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911662

RESUMEN

Introduction: Sodium thiosulfate (Na2S2O3), an H2S releasing agent, was shown to be organ-protective in experimental hemorrhage. Systemic inflammation activates immune cells, which in turn show cell type-specific metabolic plasticity with modifications of mitochondrial respiratory activity. Since H2S can dose-dependently stimulate or inhibit mitochondrial respiration, we investigated the effect of Na2S2O3 on immune cell metabolism in a blinded, randomized, controlled, long-term, porcine model of hemorrhage and resuscitation. For this purpose, we developed a Bayesian sampling-based model for 13C isotope metabolic flux analysis (MFA) utilizing 1,2-13C2-labeled glucose, 13C6-labeled glucose, and 13C5-labeled glutamine tracers. Methods: After 3 h of hemorrhage, anesthetized and surgically instrumented swine underwent resuscitation up to a maximum of 68 h. At 2 h of shock, animals randomly received vehicle or Na2S2O3 (25 mg/kg/h for 2 h, thereafter 100 mg/kg/h until 24 h after shock). At three time points (prior to shock, 24 h post shock and 64 h post shock) peripheral blood mononuclear cells (PBMCs) and granulocytes were isolated from whole blood, and cells were investigated regarding mitochondrial oxygen consumption (high resolution respirometry), reactive oxygen species production (electron spin resonance) and fluxes within the metabolic network (stable isotope-based MFA). Results: PBMCs showed significantly higher mitochondrial O2 uptake and lower O 2 • - production in comparison to granulocytes. We found that in response to Na2S2O3 administration, PBMCs but not granulocytes had an increased mitochondrial oxygen consumption combined with a transient reduction of the citrate synthase flux and an increase of acetyl-CoA channeled into other compartments, e.g., for lipid biogenesis. Conclusion: In a porcine model of hemorrhage and resuscitation, Na2S2O3 administration led to increased mitochondrial oxygen consumption combined with stimulation of lipid biogenesis in PBMCs. In contrast, granulocytes remained unaffected. Granulocytes, on the other hand, remained unaffected. O 2 • - concentration in whole blood remained constant during shock and resuscitation, indicating a sufficient anti-oxidative capacity. Overall, our MFA model seems to be is a promising approach for investigating immunometabolism; especially when combined with complementary methods.


Asunto(s)
Choque Hemorrágico , Animales , Porcinos , Choque Hemorrágico/metabolismo , Leucocitos Mononucleares/metabolismo , Teorema de Bayes , Hemorragia , Lípidos
3.
Front Immunol ; 14: 1319986, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38332911

RESUMEN

Introduction: Supplementation with increased inspired oxygen fractions has been suggested to alleviate the harmful effects of tissue hypoxia during hemorrhagic shock (HS) and traumatic brain injury. However, the utility of therapeutic hyperoxia in critical care is disputed to this day as controversial evidence is available regarding its efficacy. Furthermore, in contrast to its hypoxic counterpart, the effect of hyperoxia on the metabolism of circulating immune cells remains ambiguous. Both stimulating and detrimental effects are possible; the former by providing necessary oxygen supply, the latter by generation of excessive amounts of reactive oxygen species (ROS). To uncover the potential impact of increased oxygen fractions on circulating immune cells during intensive care, we have performed a 13C-metabolic flux analysis (MFA) on PBMCs and granulocytes isolated from two long-term, resuscitated models of combined acute subdural hematoma (ASDH) and HS in pigs with and without cardiovascular comorbidity. Methods: Swine underwent resuscitation after 2 h of ASDH and HS up to a maximum of 48 h after HS. Animals received normoxemia (PaO2 = 80 - 120 mmHg) or targeted hyperoxemia (PaO2 = 200 - 250 mmHg for 24 h after treatment initiation, thereafter PaO2 as in the control group). Blood was drawn at time points T1 = after instrumentation, T2 = 24 h post ASDH and HS, and T3 = 48 h post ASDH and HS. PBMCs and granulocytes were isolated from whole blood to perform electron spin resonance spectroscopy, high resolution respirometry and 13C-MFA. For the latter, we utilized a parallel tracer approach with 1,2-13C2 glucose, U-13C glucose, and U-13C glutamine, which covered essential pathways of glucose and glutamine metabolism and supplied redundant data for robust Bayesian estimation. Gas chromatography-mass spectrometry further provided multiple fragments of metabolites which yielded additional labeling information. We obtained precise estimations of the fluxes, their joint credibility intervals, and their relations, and characterized common metabolic patterns with principal component analysis (PCA). Results: 13C-MFA indicated a hyperoxia-mediated reduction in tricarboxylic acid (TCA) cycle activity in circulating granulocytes which encompassed fluxes of glutamine uptake, TCA cycle, and oxaloacetate/aspartate supply for biosynthetic processes. We further detected elevated superoxide levels in the swine strain characterized by a hypercholesterolemic phenotype. PCA revealed cell type-specific behavioral patterns of metabolic adaptation in response to ASDH and HS that acted irrespective of swine strains or treatment group. Conclusion: In a model of resuscitated porcine ASDH and HS, we saw that ventilation with increased inspiratory O2 concentrations (PaO2 = 200 - 250 mmHg for 24 h after treatment initiation) did not impact mitochondrial respiration of PBMCs or granulocytes. However, Bayesian 13C-MFA results indicated a reduction in TCA cycle activity in granulocytes compared to cells exposed to normoxemia in the same time period. This change in metabolism did not seem to affect granulocytes' ability to perform phagocytosis or produce superoxide radicals.


Asunto(s)
Hematoma Subdural Agudo , Hiperoxia , Choque Hemorrágico , Animales , Porcinos , Glutamina/metabolismo , Ciclo del Ácido Cítrico , Análisis de Flujos Metabólicos/métodos , Superóxidos , Teorema de Bayes , Granulocitos/metabolismo , Oxígeno , Glucosa/metabolismo
4.
Metabolites ; 14(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38248827

RESUMEN

The pentose phosphate pathway (PPP) plays a key role in the cellular regulation of immune function; however, little is known about the interplay of metabolic adjustments in granulocytes, especially regarding the non-oxidative PPP. For the determination of metabolic mechanisms within glucose metabolism, we propose a novel set of measures for 13C-metabolic flux analysis based on ex vivo parallel tracer experiments ([1,2-13C]glucose, [U-13C]glucose, [4,5,6-13C]glucose) and gas chromatography-mass spectrometry labeling measurements of intracellular metabolites, such as sugar phosphates and their fragments. A detailed constraint analysis showed that the permission range for net and irreversible fluxes was limited to a three-dimensional space. The overall workflow, including its Bayesian flux estimation, resulted in precise flux distributions and pairwise confidence intervals, some of which could be represented as a line due to the strength of their correlation. The principal component analysis that was enabled by these behaviors comprised three components that explained 99.6% of the data variance. It showed that phagocytic stimulation reversed the direction of non-oxidative PPP net fluxes from ribose-5-phosphate biosynthesis toward glycolytic pathways. This process was closely associated with the up-regulation of the oxidative PPP to promote the oxidative burst.

5.
Anal Chim Acta ; 1095: 48-60, 2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31864630

RESUMEN

The metabolism can be explored via 13C labeling of biological active substances and subsequent quantification of 13C enrichment in the exhaled carbon dioxide in breath. The resulting tracer enrichment values can be determined by Fourier-transform Infrared Spectroscopy (FTIR), since different CO2 isotopologues result in distinct absorption lines in the spectrum.The corresponding determination poses two challenges: first, FTIR absorbance can contain a nonlinear relationship between analyte amount and spectral signal and second, the spectral peaks for the different isotopologues overlap. The overlap precludes a separate calibration to asses the isotopologue concentration values and with it a determination of enrichments from concentration values. We propose here, first, a data reduction step like Principal Component Analysis (PCA) to convert the spectral information into one score pertaining to the 13CO2 enrichment. In a second step, a calibration function between score and enrichment values was established. The enrichment score can be derived by normalizing a subset of the spectrum by some measure for the 12CO2 sample content. Alternatively, the overlapping spectra were decomposed into two isotopologue spectra and the intensity of the separated spectra was used to form an enrichment score. For spectral separation, either Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) was used or a novel decomposition strategy developed for this paper called Rotation and Angle-Bending Bayesian induced Transformation - Multivariate Curve Resolution (RABBIT - MCR) that operates in a Principal Component Analysis (PCA) subspace and is derived from MCR. We compared 13C enrichment estimates from FTIR CO2 spectra using different normalization variants with the two spectral separation models. In conclusion, the two spectral separation variants performed nearly equal, but better than any normalization variant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...