Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 17(2): e0011095, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36735632

RESUMEN

Mosquito saliva is a mix of numerous proteins that are injected into the skin while the mosquito searches for a blood meal. While mosquito saliva is known to be immunogenic, the salivary components driving these immune responses, as well as the types of immune responses that occur, are not well characterized. We investigated the effects of one potential immunomodulatory mosquito saliva protein, sialokinin, on the human immune response. We used flow cytometry to compare human immune cell populations between humanized mice bitten by sialokinin knockout mosquitoes or injected with sialokinin, and compared them to those bitten by wild-type mosquitoes, unbitten, or saline-injected control mice. Humanized mice received 4 mosquito bites or a single injection, were euthanized after 7 days, and skin, spleen, bone marrow, and blood were harvested for immune cell profiling. Our results show that bites from sialokinin knockout mosquitoes induced monocyte and macrophage populations in the skin, blood, bone marrow, and spleens, and primarily affected CD11c- cell populations. Other increased immune cells included plasmacytoid dendritic cells in the blood, natural killer cells in the skin and blood, and CD4+ T cells in all samples analyzed. Conversely, we observed that mice bitten with sialokinin knockout mosquitoes had decreased NKT cell populations in the skin, and fewer B cells in the blood, spleen, and bone marrow. Taken together, we demonstrated that sialokinin knockout saliva induces elements of a TH1 cellular immune response, suggesting that the sialokinin peptide is inducing a TH2 cellular immune response during wild-type mosquito biting. These findings are an important step towards understanding how mosquito saliva modulates the human immune system and which components of saliva may be critical for arboviral infection. By identifying immunomodulatory salivary proteins, such as sialokinin, we can develop vaccines against mosquito saliva components and direct efforts towards blocking arboviral infections.


Asunto(s)
Aedes , Saliva , Humanos , Animales , Ratones , Bazo , Piel , Inmunidad , Linfocitos T CD4-Positivos , Mosquitos Vectores , Aedes/fisiología
2.
J Infect Dis ; 226(7): 1140-1150, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35924442

RESUMEN

Zika virus (ZIKV) is a mosquito-borne flavivirus that causes congenital defects. Sexual transmission of ZIKV was confirmed in a recent epidemic; however, mechanisms behind ZIKV infection and persistence in the male reproductive tract (MRT) are unknown. Previously, we found that approximately 33% of men with symptomatic ZIKV infections shed ZIKV RNA in semen, and some men shed ZIKV RNA for >3 months. Here, we evaluated the semen of 49 ZIKV-infected men to identify immune factors correlating with long-term ZIKV shedding in semen and ZIKV-infected cell types in semen. We found that prolonged ZIKV RNA shedding in semen was associated with MRT inflammation, indicated by higher leukocyte counts and inflammatory cytokine concentrations in semen of long-term versus short-term shedders. In addition, we found ZIKV RNA in seminal leukocytes and epithelial cells. This study of human semen from ZIKV-infected men provides critical insights into the effects of ZIKV on MRT health.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Citocinas , Humanos , Inflamación , Masculino , ARN , Semen , Esparcimiento de Virus , Virus Zika/genética
4.
Eur J Med Chem ; 225: 113767, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34450494

RESUMEN

Zika virus belongs to the Flavivirus family of RNA viruses, which include other important human pathogens such as dengue and West Nile virus. There are no approved antiviral drugs for these viruses. The highly conserved NS2B-NS3 protease of Flavivirus is essential for the replication of these viruses and it is therefore a drug target. Compound screen followed by medicinal chemistry optimization yielded a novel series of 2,6-disubstituted indole compounds that are potent inhibitors of Zika virus protease (ZVpro) with IC50 values as low as 320 nM. The structure-activity relationships of these and related compounds are discussed. Enzyme kinetics studies show the inhibitor 66 most likely exhibited a non-competitive mode of inhibition. In addition, this series of ZVpro inhibitors also inhibit the NS2B-NS3 protease of dengue and West Nile virus with reduced potencies. The most potent compounds 66 and 67 strongly inhibited Zika virus replication in cells with EC68 values of 1-3 µM. These compounds are novel pharmacological leads for further drug development targeting Zika virus.


Asunto(s)
Antivirales/farmacología , Indoles/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Virus Zika/efectos de los fármacos , Antivirales/síntesis química , Antivirales/química , Relación Dosis-Respuesta a Droga , Indoles/síntesis química , Indoles/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad , Proteínas no Estructurales Virales/metabolismo
5.
PLoS Negl Trop Dis ; 15(6): e0009427, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34106915

RESUMEN

Chikungunya virus (CHIKV) is an emerging, mosquito-borne alphavirus responsible for acute to chronic arthralgias and neuropathies. Although it originated in central Africa, recent reports of disease have come from many parts of the world, including the Americas. While limiting human CHIKV cases through mosquito control has been used, it has not been entirely successful. There are currently no licensed vaccines or treatments specific for CHIKV disease, thus more work is needed to develop effective countermeasures. Current animal research on CHIKV is often not representative of human disease. Most models use CHIKV needle inoculation via unnatural routes to create immediate viremia and localized clinical signs; these methods neglect the natural route of transmission (the mosquito vector bite) and the associated human immune response. Since mosquito saliva has been shown to have a profound effect on viral pathogenesis, we evaluated a novel model of infection that included the natural vector, Aedes species mosquitoes, transmitting CHIKV to mice containing components of the human immune system. Humanized mice infected by 3-6 mosquito bites showed signs of systemic infection, with demonstrable viremia (by qRT-PCR and immunofluorescent antibody assay), mild to moderate clinical signs (by observation, histology, and immunohistochemistry), and immune responses consistent with human infection (by flow cytometry and IgM ELISA). This model should give a better understanding of human CHIKV disease and allow for more realistic evaluations of mechanisms of pathogenesis, prophylaxis, and treatments.


Asunto(s)
Aedes/virología , Fiebre Chikungunya/patología , Fiebre Chikungunya/transmisión , Virus Chikungunya/aislamiento & purificación , Mordeduras y Picaduras de Insectos , Animales , Anticuerpos Monoclonales Humanizados , Anticuerpos Antivirales/sangre , Chlorocebus aethiops , Inmunoglobulina M/sangre , Ratones , Mosquitos Vectores , Agujas , ARN Viral/sangre , Pruebas Serológicas , Células Vero
6.
Virology ; 560: 43-53, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34023724

RESUMEN

Zika virus (ZIKV) can infect developing fetuses in utero and cause severe congenital defects independent of route of maternal infection. Infected men can shed ZIKV RNA in semen for over six months. Whether prolonged viral RNA shedding in semen indicates a persistent infection in the male reproductive tract is unknown. We hypothesized that if ZIKV establishes a persistent infection in the male reproductive tract (MRT), then immunosuppressant treatment should stimulate ZIKV replication and seminal shedding. Male mice were infected with ZIKV and immunosuppressed when they shed viral RNA but not infectious virus in ejaculates. Following immunosuppression, we did not detect infectious virus in ejaculates. However, we did detect ZIKV positive and negative sense RNA in the epididymal lumens of mice treated with cyclophosphamide, suggesting that ZIKV persists in the epididymis. This study provides insight into the mechanisms behind ZIKV sexual transmission, which may inform public health decisions regarding ZIKV risks.


Asunto(s)
Epidídimo/virología , Huésped Inmunocomprometido/inmunología , ARN Viral/aislamiento & purificación , Infección por el Virus Zika/transmisión , Virus Zika/aislamiento & purificación , Animales , Línea Celular , Chlorocebus aethiops , Ciclofosfamida/farmacología , Tolerancia Inmunológica/inmunología , Inmunosupresores/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Infección Persistente/virología , ARN Viral/genética , Recurrencia , Semen/virología , Enfermedades Virales de Transmisión Sexual/transmisión , Células Vero , Esparcimiento de Virus/genética , Virus Zika/genética
7.
J Med Chem ; 64(5): 2777-2800, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33596380

RESUMEN

Flaviviruses, including Zika, dengue, and West Nile viruses, are important human pathogens. The highly conserved NS2B-NS3 protease of Flavivirus is essential for viral replication and therefore a promising drug target. Through compound screening, followed by medicinal chemistry studies, a novel series of 2,5,6-trisubstituted pyrazine compounds are found to be potent, allosteric inhibitors of Zika virus protease (ZVpro) with IC50 values as low as 130 nM. Their structure-activity relationships are discussed. The ZVpro inhibitors also inhibit homologous proteases of dengue and West Nile viruses, and their inhibitory activities are correlated. The most potent compounds 47 and 103 potently inhibited Zika virus replication in cells with EC68 values of 300-600 nM and in a mouse model of Zika infection. These compounds represent novel pharmacological leads for drug development against Flavivirus infections.


Asunto(s)
Antivirales/uso terapéutico , Pirazinas/uso terapéutico , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/uso terapéutico , Proteínas Virales/metabolismo , Infección por el Virus Zika/tratamiento farmacológico , Regulación Alostérica/efectos de los fármacos , Animales , Antivirales/síntesis química , Línea Celular Tumoral , Virus del Dengue/enzimología , Humanos , Ratones , Estructura Molecular , Pirazinas/síntesis química , Inhibidores de Serina Proteinasa/síntesis química , Relación Estructura-Actividad , Proteínas no Estructurales Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Virus del Nilo Occidental/enzimología , Virus Zika/enzimología
8.
PLoS One ; 15(12): e0244587, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33378361

RESUMEN

Our previous studies have shown that Zika virus (ZIKV) replicates in human prostate cells, suggesting that the prostate may serve as a long-term reservoir for virus transmission. Here, we demonstrated that the innate immune responses generated to three distinct ZIKV strains (all isolated from human serum) were significantly different and dependent on their passage history (in mosquito, monkey, or human cells). In addition, some of these phenotypic differences were reduced by a single additional cell culture passage, suggesting that viruses that have been passaged more than 3 times from the patient sample will no longer reflect natural phenotypes. Two of the ZIKV strains analyzed induced high levels of the IP-10 chemokine and IFNγ in human prostate epithelial and stromal mesenchymal stem cells. To further understand the importance of these innate responses on ZIKV replication, we measured the effects of IP-10 and its downstream receptor, CXCR3, on RNA and virus production in prostate cells. Treatment with IP-10, CXCR3 agonist, or CXCR3 antagonist significantly altered ZIKV viral gene expression, depending on their passage in cells of relevant hosts (mosquito or human). We detected differences in gene expression of two primary CXCR3 isoforms (CXCR3-A and CXCR3-B) on the two cell types, possibly explaining differences in viral output. Lastly, we examined the effects of IP-10, agonist, or antagonist on cell death and proliferation under physiologically relevant infection rates, and detected no significant differences. Although we did not measure protein expression directly, our results indicate that CXCR3 signaling may be a target for therapeutics, to ultimately stop sexual transmission of this virus.


Asunto(s)
Quimiocina CXCL10/metabolismo , Próstata/virología , Receptores CXCR3/metabolismo , Infección por el Virus Zika/inmunología , Virus Zika/fisiología , Animales , Línea Celular , Proliferación Celular , Supervivencia Celular , Quimiocina CXCL10/genética , Culicidae/virología , Regulación de la Expresión Génica , Haplorrinos/virología , Humanos , Inmunidad Innata , Masculino , Próstata/citología , Próstata/inmunología , Receptores CXCR3/genética , Pase Seriado , Transducción de Señal , Replicación Viral , Virus Zika/inmunología , Infección por el Virus Zika/genética , Infección por el Virus Zika/virología
9.
PLoS Negl Trop Dis ; 13(11): e0007837, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31765380

RESUMEN

One of the most important clinical signs of dengue virus infection is the reduction of white blood cells and platelets in human peripheral blood (leukopenia and thrombocytopenia, respectively), which may significantly impair the clearance of dengue virus by the immune system. The cause of thrombocytopenia and leukopenia during dengue infection is still unknown, but may be related to severe suppression of bone marrow populations including hematopoietic stem cells and megakaryocytes, the progenitors of white blood cells and platelets respectively. Here, we explored the possibility that bone marrow suppression, including ablation of megakaryocyte populations, is caused by dengue virus infection of megakaryocytes. We used three different models to measure dengue virus infection and replication: in vitro, in a human megakaryocyte cell line with viral receptors, ex vivo, in primary human megakaryocytes, and in vivo, in humanized mice. All three systems support dengue virus infection and replication, including virus strains from serotypes 1, 2, and 3, and clinical signs, in vivo; all assays showed viral RNA and/or infectious viruses 7-14 days post-infection. Although we saw no significant decrease in cell viability in vitro, there was significant depletion of mature megakaryocytes in vivo. We conclude that megakaryocytes can produce dengue viruses in the bone marrow niche, and a reduction of cell numbers may affect bone marrow homeostasis.


Asunto(s)
Virus del Dengue/crecimiento & desarrollo , Dengue/patología , Megacariocitos/virología , Animales , Médula Ósea/virología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones SCID , Modelos Teóricos
10.
J Am Chem Soc ; 141(17): 6832-6836, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31017399

RESUMEN

Flaviviruses, including dengue, West Nile and recently emerged Zika virus, are important human pathogens, but there are no drugs to prevent or treat these viral infections. The highly conserved Flavivirus NS2B-NS3 protease is essential for viral replication and therefore a drug target. Compound screening followed by medicinal chemistry yielded a series of drug-like, broadly active inhibitors of Flavivirus proteases with IC50 as low as 120 nM. The inhibitor exhibited significant antiviral activities in cells (EC68: 300-600 nM) and in a mouse model of Zika virus infection. X-ray studies reveal that the inhibitors bind to an allosteric, mostly hydrophobic pocket of dengue NS3 and hold the protease in an open, catalytically inactive conformation. The inhibitors and their binding structures would be useful for rational drug development targeting Zika, dengue and other Flaviviruses.


Asunto(s)
Antivirales/uso terapéutico , Inhibidores de Proteasas/uso terapéutico , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/antagonistas & inhibidores , Infección por el Virus Zika/tratamiento farmacológico , Sitio Alostérico , Aminopiridinas/síntesis química , Aminopiridinas/metabolismo , Aminopiridinas/uso terapéutico , Animales , Antivirales/síntesis química , Antivirales/metabolismo , Línea Celular Tumoral , Chlorocebus aethiops , Cristalografía por Rayos X , Virus del Dengue/enzimología , Descubrimiento de Drogas , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/metabolismo , Unión Proteica , Pirazinas/síntesis química , Pirazinas/metabolismo , Pirazinas/uso terapéutico , Serina Endopeptidasas/química , Células Vero , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Virus del Nilo Occidental/enzimología , Virus Zika/enzimología
11.
PLoS Negl Trop Dis ; 12(5): e0006439, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29771921

RESUMEN

Mosquito saliva is a very complex concoction of >100 proteins, many of which have unknown functions. The effects of mosquito saliva proteins injected into our skin during blood feeding have been studied mainly in mouse models of injection or biting, with many of these systems producing results that may not be relevant to human disease. Here, we describe the numerous effects that mosquito bites have on human immune cells in mice engrafted with human hematopoietic stem cells. We used flow cytometry and multiplex cytokine bead array assays, with detailed statistical analyses, to detect small but significant variations in immune cell functions after 4 mosquitoes fed on humanized mice footpads. After preliminary analyses, at different early times after biting, we focused on assessing innate immune and subsequent cellular responses at 6 hours, 24 hours and 7 days after mosquito bites. We detected both Th1 and Th2 human immune responses, and delayed effects on cytokine levels in the blood, and immune cell compositions in the skin and bone marrow, up to 7 days post-bites. These are the first measurements of this kind, with human immune responses in whole animals, bitten by living mosquitoes, versus previous studies using incomplete mouse models and salivary gland extracts or needle injected saliva. The results have major implications for the study of hematophagous insect saliva, its effects on the human immune system, with or without pathogen transmission, and the possibility of determining which of these proteins to target for vaccination, in attempts to block transmission of numerous tropical diseases.


Asunto(s)
Aedes/inmunología , Sistema Inmunológico/inmunología , Mordeduras y Picaduras de Insectos/inmunología , Saliva/inmunología , Aedes/fisiología , Animales , Citocinas/genética , Citocinas/inmunología , Femenino , Humanos , Sistema Inmunológico/parasitología , Mordeduras y Picaduras de Insectos/genética , Mordeduras y Picaduras de Insectos/parasitología , Proteínas de Insectos/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células T Asesinas Naturales/inmunología
12.
J Infect Dis ; 217(4): 538-547, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28968863

RESUMEN

Background: While Zika virus (ZIKV) is mainly transmitted by mosquitoes, numerous cases of sexual transmission have been reported during recent outbreaks. Little is known about which host cell types or entry factors aid in mediating this sexual transmission. Methods: In this study, we investigated ZIKV cell tropism by infecting 2 types of human prostate cells with 3 contemporary ZIKV isolates from persons infected in the Americas. We used real-time quantitative polymerase chain reaction and immunofluorescence analyses to measure infection and flow cytometry to detect entry factor expression. Results: Here we show that ZIKV infects, replicates, and produces infectious virus in prostate stromal mesenchymal stem cells, epithelial cells, and organoids made with a combination of these cells. We also show that prostate cells express several well-characterized flavivirus attachment factors. In contrast, dengue virus does not infect or does not replicate in these prostate cells, although it is known to use similar receptors. Conclusions: Our results indicate that ZIKV favors infection of stromal cells more so than epithelial cells in organoids, possibly indicating a preference for stem cells in general. Overall, these results suggest that ZIKV replication occurs in the human prostate and can account for ZIKV secretion in semen, thus leading to sexual transmission.


Asunto(s)
Células Epiteliales/virología , Células Madre Mesenquimatosas/virología , Próstata/virología , Tropismo Viral , Replicación Viral , Virus Zika/fisiología , Américas , Citometría de Flujo , Humanos , Masculino , Microscopía Fluorescente , Reacción en Cadena en Tiempo Real de la Polimerasa , Cultivo de Virus , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/virología
13.
Sci Rep ; 7: 41389, 2017 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-28128342

RESUMEN

Zika virus (ZIKV) is an emerging mosquito-borne (Aedes genus) arbovirus of the Flaviviridae family. Although ZIKV has been predominately associated with a mild or asymptomatic dengue-like disease, its appearance in the Americas has been accompanied by a multi-fold increase in reported incidence of fetal microcephaly and brain malformations. The source and mode of vertical transmission from mother to fetus is presumptively transplacental, although a causal link explaining the interval delay between maternal symptoms and observed fetal malformations following infection has been missing. In this study, we show that primary human placental trophoblasts from non-exposed donors (n = 20) can be infected by primary passage ZIKV-FLR isolate, and uniquely allowed for ZIKV viral RNA replication when compared to dengue virus (DENV). Consistent with their being permissive for ZIKV infection, primary trophoblasts expressed multiple putative ZIKV cell entry receptors, and cellular function and differentiation were preserved. These findings suggest that ZIKV-FLR strain can replicate in human placental trophoblasts without host cell destruction, thereby serving as a likely permissive reservoir and portal of fetal transmission with risk of latent microcephaly and malformations.


Asunto(s)
Placenta/patología , Trofoblastos/virología , Replicación Viral/fisiología , Virus Zika/fisiología , Adulto , Células Cultivadas , Dengue/patología , Dengue/virología , Virus del Dengue/fisiología , Femenino , Células Gigantes/metabolismo , Células Gigantes/patología , Humanos , Ligandos , MicroARNs/genética , MicroARNs/metabolismo , Filogenia , Embarazo , ARN Viral/metabolismo , Receptores Virales/metabolismo , Receptores Toll-Like/metabolismo , Infección por el Virus Zika/patología , Infección por el Virus Zika/virología
14.
PLoS Negl Trop Dis ; 10(9): e0005019, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27654889

RESUMEN

BACKGROUND: Zika virus (Flavivirus genus) is the first mosquito-borne virus known to cause high rates of microcephaly and abortion in humans. Typically, Zika virus causes a self-limiting, systemic illness; however, the current outbreak of Zika virus in the Americas has been associated with increased rates of fetal malformations and Guillain-Barré syndrome. Very few Zika virus isolates have been described in the literature, and live viruses are needed to perform studies of pathogenesis and to develop vaccines and treatments. METHODOLOGY/CLINICAL FINDINGS: We isolated Zika virus, strain FLR, directly from the serum of an individual infected in Barranquilla, Colombia (December, 2015). Here, we describe the patient's clinical course and characterize strain FLR by its growth characteristics in mosquito and mammalian cells and its partial resistance to UV-inactivation. The full genome sequence of FLR was also analyzed (including the 3' un-translated region), to determine its probable geographic origin, and to pinpoint structural differences from other Zika virus strains. CONCLUSIONS/SIGNIFICANCE: We anticipate that the study of this low passage, clinical isolate of Zika virus, which is available for worldwide distribution, will help uncover the mechanisms of viral replication and host immune responses contributing to the varied and sometimes severe clinical presentations seen during the current epidemic in the Americas.

15.
PLoS One ; 8(12): e84049, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349564

RESUMEN

Johne's disease is an infectious chronic inflammatory bowel disease in ruminants. The key factor for the management of this disease is an early positive diagnosis. Unfortunately, most diagnostics detect animals with Johne's disease in the clinical stage with positive serology and/or positive fecal cultures. However, for effective management of the disease within herds, it is important to detect infected animals as early as possible. This might only be possible with the help of parameters not specific for Johne's disease but that give an early indication for chronic infections such as weight development. Here we report our findings on the development of total body weight and weight gain during the first six months of goats experimentally infected to induce Johne's disease. Twenty dairy goat kids age 2 to 5 days were included in this study. Goats were divided into two groups: a negative control group and a positive infected group. The weight was obtained weekly throughout the study. Goats of the positive group were infected at the age of seven weeks. We detected significant changes in weight gain and total body weight as early as one week after infection. Differences are significant throughout the six month time period. Weight as a non-specific parameter should be used to monitor infection especially in studies on Johne's disease using the goat model. Our study suggests that goats with Johne's disease have a reduced weight gain and reduced weight when compared with healthy goats of the same age.


Asunto(s)
Peso Corporal , Enfermedades de las Cabras , Mycobacterium avium subsp. paratuberculosis , Animales , Enfermedades de las Cabras/diagnóstico , Enfermedades de las Cabras/patología , Enfermedades de las Cabras/fisiopatología , Cabras , Paratuberculosis/diagnóstico , Paratuberculosis/patología , Paratuberculosis/fisiopatología , Factores de Tiempo
16.
Virology ; 409(2): 299-307, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-21067790

RESUMEN

Walleye dermal sarcoma virus encodes a retroviral cyclin (rv-cyclin) with a cyclin box fold and transcription activation domain (AD). Co-immune precipitation (co-IP) identified an association of rv-cyclin with cyclin-dependent kinase 8 (cdk8). Cdk8 is dependent upon cyclin C and regulates transcription with the Mediator complex, a co-activator of transcription. Mutation of cyclin residues, required for cdk binding, disrupts rv-cyclin-cdk8 co-IP. Mutation or removal of the AD has no effect on cdk8 interaction. Direct rv-cyclin-cdk8 binding is demonstrated by pulldown of active cdk8 and by GST-rv-cyclin binding to recombinant cdk8. Cdk3 is also activated by cyclin C and phosphorylates retinoblastoma protein to initiate entry into the cell division cycle. Co-IP and pulldowns demonstrate direct rv-cyclin binding to cdk3 as well. The rv-cyclin functions as a structural ortholog of cyclin C in spite of its limited amino acid sequence identity with C cyclins or with any known cyclins.


Asunto(s)
Quinasa 3 Dependiente de Ciclina/metabolismo , Quinasa 8 Dependiente de Ciclina/metabolismo , Ciclinas/metabolismo , Epsilonretrovirus/fisiología , Interacciones Huésped-Patógeno , Proteínas Virales/metabolismo , Células HeLa , Humanos , Inmunoprecipitación , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...