Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 220: 118593, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35671683

RESUMEN

An industrial ceramic nanofiltration membrane (pore size 0.9 nm) was tested in a Canadian oil field for more than 12,500 h to treat wastewater directly from daily operations, without any type of pre-treatment. This wastewater contained a high content of total suspended solids (13 to 510 mg/kg), and total organic carbon (31 to 134 mg/kg). The membrane unit was operated at different transmembrane pressure (TMP) set points (4-16 bar) and recovery set points (40-80%). The data show that ion and compound rejection depend strongly on a combination of both TMP and recovery, with the largest rejection occurring at low recovery values and high TMP values. Two mechanisms were responsible for rejection: sieving, which mostly impacted compound rejection, and electrostatic phenomena that impacted ion rejection. It is shown that ion rejection depends linearly on charge density of the ion. Ion rejection was measured as high as 85% and compounds (such as TSS) were rejected as high as 100%. The specific flux varied between 1-10 L/(m2.h.bar). Results from this field testing indicate the possibility of using these types of ceramic membranes for oil field wastewater treatment.


Asunto(s)
Aguas Residuales , Purificación del Agua , Canadá , Cerámica , Filtración/métodos , Membranas Artificiales , Purificación del Agua/métodos
2.
Angew Chem Int Ed Engl ; 56(27): 7760-7763, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28504418

RESUMEN

Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp2 hybridized carbon sheets as well as sp3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m3 (STP)/(m2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide.

3.
ACS Appl Mater Interfaces ; 6(15): 12270-8, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25014337

RESUMEN

Superparamagnetic Ni nanoparticles with diameters of about 3 nm are formed in situ at room temperature in a polysilazane matrix, forming Ni/polysilazane nanocomposite, in the reaction between a polysilazane and trans-bis(aceto-kO)bis(2-aminoethanol-k(2)N,O)nickel(II). The thermolysis of the Ni/polysilazane nanocomposite at 700 °C in an argon atmosphere results in a microporous superparamagnetic Ni/silicon oxycarbonitride (Ni/SiCNO) ceramic nanocomposite. The growth of Ni nanoparticles in Ni/SiCNO ceramic nanocomposite is totally suppressed even after thermolysis at 700 °C, as confirmed by HRTEM and SQUID characterizations. The analysis of saturation magnetization of Ni nanoparticles in Ni/polysilazane and Ni/SiCNO nanocomposites indicates that the saturation magnetization of Ni nanoparticles is higher than expected values and infers that the surfaces of Ni nanoparticles are not oxidized. The microporous superparamagnetic Ni/SiCNO nanocomposite is shaped as a free-standing monolith and foam. In addition, Ni/SiCNO membranes are fabricated by the dip-coating of a tubular alumina substrate in a dispersion of Ni/polysilazane in THF followed by a thermolysis at 700 °C under an argon atmosphere. The gas separation performance of Ni/SiCNO membranes at 25 and 300 °C is assessed by the single gas permeance (pressure rise technique) using He, H2, CO2, N2, CH4, n-propene, n-propane, n-butene, n-butane, and SF6 as probe molecules. After hydrothermal treatment, the higher increase in the hydrogen permeance compared to the permeance of other gases as a function of temperature indicates that the hydrogen affinity of Ni nanoparticles influences the transport of hydrogen in the Ni/SiCNO membrane and Ni nanoparticles stabilize the structure against hydrothermal corrosion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA