Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 505(7484): 515-9, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24362565

RESUMEN

Mitochondrial ribosomes synthesize a number of highly hydrophobic proteins encoded on the genome of mitochondria, the organelles in eukaryotic cells that are responsible for energy conversion by oxidative phosphorylation. The ribosomes in mammalian mitochondria have undergone massive structural changes throughout their evolution, including ribosomal RNA shortening and acquisition of mitochondria-specific ribosomal proteins. Here we present the three-dimensional structure of the 39S large subunit of the porcine mitochondrial ribosome determined by cryo-electron microscopy at 4.9 Å resolution. The structure, combined with data from chemical crosslinking and mass spectrometry experiments, reveals the unique features of the 39S subunit at near-atomic resolution and provides detailed insight into the architecture of the polypeptide exit site. This region of the mitochondrial ribosome has been considerably remodelled compared to its bacterial counterpart, providing a specialized platform for the synthesis and membrane insertion of the highly hydrophobic protein components of the respiratory chain.


Asunto(s)
Mitocondrias/química , Subunidades Ribosómicas/química , Animales , Bovinos , Microscopía por Crioelectrón , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Mitocondrias/ultraestructura , Proteínas Mitocondriales/química , Proteínas Mitocondriales/ultraestructura , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , ARN Ribosómico 16S/química , ARN Ribosómico 16S/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas/ultraestructura , Porcinos
2.
Mol Cell ; 52(5): 643-54, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24211265

RESUMEN

The universally conserved signal recognition particle (SRP) system mediates the targeting of membrane proteins to the translocon in a multistep process controlled by GTP hydrolysis. Here we present the 2.6 Å crystal structure of the GTPase domains of the E. coli SRP protein (Ffh) and its receptor (FtsY) in complex with the tetraloop and the distal region of SRP-RNA, trapped in the activated state in presence of GDP:AlF4. The structure reveals the atomic details of FtsY recruitment and, together with biochemical experiments, pinpoints G83 as the key RNA residue that stimulates GTP hydrolysis. Insertion of G83 into the FtsY active site orients a single glutamate residue provided by Ffh (E277), triggering GTP hydrolysis and complex disassembly at the end of the targeting cycle. The complete conservation of the key residues of the SRP-RNA and the SRP protein implies that the suggested chemical mechanism of GTPase activation is applicable across all kingdoms.


Asunto(s)
Proteínas Bacterianas/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , ARN/genética , Receptores Citoplasmáticos y Nucleares/genética , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo , Compuestos de Aluminio/farmacología , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Dominio Catalítico/efectos de los fármacos , Dominio Catalítico/genética , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fluoruros/farmacología , Activadores de GTP Fosfohidrolasa/farmacología , Guanosina Difosfato/genética , Guanosina Difosfato/metabolismo , Hidrólisis/efectos de los fármacos , Datos de Secuencia Molecular , ARN/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Análisis de Secuencia de ADN
3.
Nat Struct Mol Biol ; 20(8): 1015-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23851459

RESUMEN

Eukaryotic translation initiation factors (eIFs) 1A and 1 are central players in the complex process of start-codon recognition. To improve mechanistic understanding of this process, we determined the crystal structure of the 40S ribosomal subunit in complex with eIF1A and eIF1 from Tetrahymena thermophila at a resolution of 3.7 Å. It reveals the positions of the two factors on the 40S and the conformational changes that accompany their binding.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Modelos Moleculares , Complejos Multiproteicos/química , Conformación Proteica , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Tetrahymena thermophila/química , Clonación Molecular , Cristalización , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de Proteína
4.
Curr Opin Struct Biol ; 22(6): 768-77, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22889726

RESUMEN

The initiation of protein biosynthesis entails the ordered assembly of elongation-competent ribosomes, with an initiator tRNA basepaired to an appropriate mRNA start codon. In eukaryotes, this process is more complex than in prokaryotes and involves numerous protein factors that mediate tRNA delivery, mRNA binding, start codon selection and subunit joining. The recent 40S:eIF1, 80S and eIF2:tRNA:GDPNP ternary complex structures provide an initial structural framework toward a molecular understanding of the eukaryotic translation initiation process. Updated homology models of larger initiation complexes provide first insights into the likely arrangements of these higher-order complexes, but also reveal the limits of our current understanding of the eukaryotic translation initiation process.


Asunto(s)
Eucariontes/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Ribosomas/química , Ribosomas/metabolismo , Animales , Factores Eucarióticos de Iniciación/metabolismo , Humanos , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo
5.
Trends Biochem Sci ; 37(5): 189-98, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22436288

RESUMEN

Eukaryotic ribosomes are significantly larger and more complex than their prokaryotic counterparts. This parallels the increased complexity of the associated cellular machinery responsible for translation initiation, ribosome assembly, and the regulation of protein synthesis in eukaryotic cells. The recently determined crystal structures of the small (40S) and large (60S) ribosomal subunits and the 80S ribosome now provide an atomic description of this essential molecular machine and reveal its eukaryote-specific features. In this review, we discuss the common structural principles underlying the evolution of both ribosomal subunits. The recently obtained structural information provides a framework for further genetic, biochemical and structural studies of eukaryotic ribosomes. At the same time, it facilitates a direct comparison between prokaryotic and eukaryotic ribosomal features.


Asunto(s)
Biosíntesis de Proteínas , ARN Ribosómico/química , Proteínas Ribosómicas/química , Ribosomas/química , Cristalografía por Rayos X , Células Eucariotas/metabolismo , Modelos Moleculares , ARN Ribosómico/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
6.
Science ; 334(6058): 941-8, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-22052974

RESUMEN

Protein synthesis in all organisms is catalyzed by ribosomes. In comparison to their prokaryotic counterparts, eukaryotic ribosomes are considerably larger and are subject to more complex regulation. The large ribosomal subunit (60S) catalyzes peptide bond formation and contains the nascent polypeptide exit tunnel. We present the structure of the 60S ribosomal subunit from Tetrahymena thermophila in complex with eukaryotic initiation factor 6 (eIF6), cocrystallized with the antibiotic cycloheximide (a eukaryotic-specific inhibitor of protein synthesis), at a resolution of 3.5 angstroms. The structure illustrates the complex functional architecture of the eukaryotic 60S subunit, which comprises an intricate network of interactions between eukaryotic-specific ribosomal protein features and RNA expansion segments. It reveals the roles of eukaryotic ribosomal protein elements in the stabilization of the active site and the extent of eukaryotic-specific differences in other functional regions of the subunit. Furthermore, it elucidates the molecular basis of the interaction with eIF6 and provides a structural framework for further studies of ribosome-associated diseases and the role of the 60S subunit in the initiation of protein synthesis.


Asunto(s)
Factores Eucarióticos de Iniciación/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes de Eucariotas/química , Tetrahymena thermophila/química , Antibacterianos/metabolismo , Secuencia de Bases , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Cicloheximida/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Iniciación de la Cadena Peptídica Traduccional , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , ARN Protozoario/química , ARN Protozoario/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN Ribosómico 5.8S/química , ARN Ribosómico 5.8S/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Tetrahymena thermophila/metabolismo
7.
RNA ; 16(3): 610-20, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20106954

RESUMEN

Pseudouridine is the most abundant of more than 100 chemically distinct natural ribonucleotide modifications. Its synthesis consists of an isomerization reaction of a uridine residue in the RNA chain and is catalyzed by pseudouridine synthases. The unusual reaction mechanism has become the object of renewed research effort, frequently involving replacement of the substrate uridines with 5-fluorouracil (f(5)U). f(5)U is known to be a potent inhibitor of pseudouridine synthase activity, but the effect varies among the target pseudouridine synthases. Derivatives of f(5)U have previously been detected, which are thought to be either hydrolysis products of covalent enzyme-RNA adducts, or isomerization intermediates. Here we describe the interaction of pseudouridine synthase 1 (Pus1p) with f(5)U-containing tRNA. The interaction described is specific to Pus1p and position 27 in the tRNA anticodon stem, but the enzyme neither forms a covalent adduct nor stalls at a previously identified reaction intermediate of f(5)U. The f(5)U27 residue, as analyzed by a DNAzyme-based assay using TLC and mass spectrometry, displayed physicochemical properties unaltered by the reversible interaction with Pus1p. Thus, Pus1p binds an f(5)U-containing substrate, but, in contrast to other pseudouridine synthases, leaves the chemical structure of f(5)U unchanged. The specific, but nonproductive, interaction demonstrated here thus constitutes an intermediate of Pus turnover, stalled by the presence of f(5)U in an early state of catalysis. Observation of the interaction of Pus1p with fluorescence-labeled tRNA by a real-time readout of fluorescence anisotropy and FRET revealed significant structural distortion of f(5)U-tRNA structure in the stalled intermediate state of pseudouridine catalysis.


Asunto(s)
Fluorouracilo/química , Hidroliasas/química , Seudouridina/biosíntesis , Animales , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ratones , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Leucina/química , Saccharomyces cerevisiae/enzimología
8.
Curr Protoc Nucleic Acid Chem ; Chapter 11: Unit 11.12, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18819081

RESUMEN

Investigation of single RNA molecules using fluorescence resonance energy transfer (FRET) is a powerful approach to investigate dynamic and thermodynamic aspects of the folding process of a given RNA. Its application requires interdisciplinary work from the fields of chemistry, biochemistry, and physics. The present work gives detailed instructions on the synthesis of RNA molecules labeled with two fluorescent dyes interacting by FRET, as well as on their investigation by single-molecule fluorescence spectroscopy.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , ARN/química , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Colorantes Fluorescentes/química , Rayos Láser , Conformación de Ácido Nucleico , ARN/síntesis química , Espectrometría de Fluorescencia , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA