Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 14(39): 10847-10860, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37829016

RESUMEN

Despite the myriad Cu-catalyzed nitrene transfer methodologies to form new C-N bonds (e.g., amination, aziridination), the critical reaction intermediates have largely eluded direct characterization due to their inherent reactivity. Herein, we report the synthesis of dipyrrin-supported Cu nitrenoid adducts, investigate their spectroscopic features, and probe their nitrene transfer chemistry through detailed mechanistic analyses. Treatment of the dipyrrin CuI complexes with substituted organoazides affords terminally ligated organoazide adducts with minimal activation of the azide unit as evidenced by vibrational spectroscopy and single crystal X-ray diffraction. The Cu nitrenoid, with an electronic structure most consistent with a triplet nitrene adduct of CuI, is accessed following geometric rearrangement of the azide adduct from κ1-N terminal ligation to κ1-N internal ligation with subsequent expulsion of N2. For perfluorinated arylazides, stoichiometric and catalytic C-H amination and aziridination was observed. Mechanistic analysis employing substrate competition reveals an enthalpically-controlled, electrophilic nitrene transfer for primary and secondary C-H bonds. Kinetic analyses for catalytic amination using tetrahydrofuran as a model substrate reveal pseudo-first order kinetics under relevant amination conditions with a first-order dependence on both Cu and organoazide. Activation parameters determined from Eyring analysis (ΔH‡ = 9.2(2) kcal mol-1, ΔS‡ = -42(2) cal mol-1 K-1, ΔG‡298K = 21.7(2) kcal mol-1) and parallel kinetic isotope effect measurements (1.10(2)) are consistent with rate-limiting Cu nitrenoid formation, followed by a proposed stepwise hydrogen-atom abstraction and rapid radical recombination to furnish the resulting C-N bond. The proposed mechanism and experimental analysis are further corroborated by density functional theory calculations. Multiconfigurational calculations provide insight into the electronic structure of the catalytically relevant Cu nitrene intermediates. The findings presented herein will assist in the development of future methodology for Cu-mediated C-N bond forming catalysis.

2.
Nature ; 616(7955): 84-89, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36787801

RESUMEN

Asymmetric transition-metal catalysis represents a powerful strategy for accessing enantiomerically enriched molecules1-3. The classical strategy for inducing enantioselectivity with transition-metal catalysts relies on direct complexation of chiral ligands to produce a sterically constrained reactive metal site that allows formation of the major product enantiomer while effectively inhibiting the pathway to the minor enantiomer through steric repulsion4. The chiral-ligand strategy has proven applicable to a wide variety of highly enantioselective transition-metal-catalysed reactions, but important scenarios exist that impose limits to its successful adaptation. Here, we report a new approach for inducing enantioselectivity in transition-metal-catalysed reactions that relies on neutral hydrogen-bond donors (HBDs)5,6 that bind anions of cationic transition-metal complexes to achieve enantiocontrol and rate enhancement through ion pairing together with other non-covalent interactions7-9. A cooperative anion-binding effect of a chiral bis-thiourea HBD is demonstrated to lead to high enantioselectivity (up to 99% enantiomeric excess) in intramolecular ruthenium-catalysed propargylic substitution reactions10. Experimental and computational mechanistic studies show the attractive interactions between electron-deficient arene components of the HBD and the metal complex that underlie enantioinduction and the acceleration effect.

3.
J Am Chem Soc ; 142(16): 7306-7311, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32285674

RESUMEN

A stereoselective synthesis of the ribosome-binding antitumor antibiotic (-)-bactobolin A is reported. The presented approach makes effective use of (-)-quinic acid as a chiral pool starting material and substrate stereocontrol to establish the five contiguous stereocenters of (-)-bactobolin A. The key steps of the synthesis include a stereoselective vinylogous aldol reaction to introduce the unusual dichloromethyl substituent, a completely diastereoselective rhodium(II)-catalyzed C-H amination reaction to set the configuration of the axial amine, and an intramolecular alkoxycarbonylation to build the bicyclic lactone framework. The developed synthetic route was used to prepare 90 mg of (-)-bactobolin A trifluoroacetate in 10% overall yield.


Asunto(s)
Benzopiranos/síntesis química , Catálisis , Estereoisomerismo
4.
Org Lett ; 20(22): 7085-7089, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30375225

RESUMEN

Enantioselective conjugate additions of in situ generated 2-alkoxycarbonyl-3(2 H)-furanones to three distinct types of π-electrophiles (terminal alkynones, α-bromo enones, and α-benzyl nitroalkenes) are reported. Catalysis by a nickel(II)-diamine complex provided alkynone-derived adducts with high enantioselectivity, preferentially as the Z-isomers, and completely suppressed the undesired O-alkylation pathway. A cupreidine-based catalyst enabled extension of the enantioselective conjugate additions to α-bromo enones and α-benzyl nitroalkenes. The densely functionalized adducts that result are useful precursors to synthetic analogs of spirocyclic natural products pseurotins.

5.
Org Lett ; 19(4): 750-753, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28157322

RESUMEN

The first synthesis of cephalimysins B and C is reported. The route features a Ni(II)-diamine-catalyzed enantioselective conjugate addition of a densely substituted 3(2H)-furanone and an efficient dihydroxylation-lactonization sequence as key steps in the assembly of the spirocyclic core. The fully synthetic strategy is amenable to analog preparation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...