Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ambio ; 50(11): 1991-2008, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34519957

RESUMEN

We present climate-dependent changes in the high-mountain forest ecotone, old-growth forests, alpine phytocenoses, and deglaciated forelands in the Aktru glacial basin (Altai Republic, Russia). A number of independent sources (variations in upper treeline altitude, dendrochronological data, analysis of lacustrine sediments and botanical and geographical studies linked with the dynamics of glacial-dammed lakes in the Chuya and Kurai intermountain depressions) suggest Holocene temperatures reached about 4 °C higher than today. Unlike the European Alps, glaciers in the continental Altai Mountains disappeared before forming again. Also, the upper altitudinal limit of mountain forests during the Holocene was greater than in the European Alps. The high variability of mountain ecosystems in southern Siberia suggests their potential instability in a currently changing climate. However, periglacial successions associated with the strong continental climate and glacier retreat represent an area of increasing biodiversity and plant cover. The historical and current sensitivity of the continental mountains to climate variations which exceeds that of the European Alps requires greater understanding, environmental protection, and increased social responsibility for the consequences of anthropogenic contributions to climate change: the isolated Altai areas contribute little to climate changes, but are greatly affected by them.


Asunto(s)
Biodiversidad , Cambio Climático , Ecosistema , Cubierta de Hielo , Bosques , Federación de Rusia
2.
Ambio ; 50(11): 1975-1990, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34244968

RESUMEN

Changes in climate, land-use and pollution are having disproportionate impacts on ecosystems and biodiversity of arctic and mountain ecosystems. While these impacts are well-documented for many areas of the Arctic and alpine regions, some isolated and inaccessible mountain areas are poorly studied. Furthermore, even in well-studied regions, assessments of biodiversity and species responses to environmental change are biased towards vascular plants and cryptogams, particularly bryophytes are far less represented. This paper aims to document the environments of the remote and inaccessible Altai-Sayan mountain mires and particularly their bryofloras where threatened species exist and species new to the regional flora are still being found. As these mountain mires are relatively inaccessible, changes in drivers of change and their ecosystem and biodiversity impacts have not been monitored. However, the remoteness of the mires has so far protected them and their species. In this study, we describe the mires, their bryophyte species and the expected impacts of environmental stressors to bring attention to the urgency of documenting change and conserving these pristine ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Regiones Árticas , Clima , Cambio Climático , Siberia
3.
Ambio ; 50(11): 1926-1952, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34115347

RESUMEN

Biological diversity is the basis for, and an indicator of biosphere integrity. Together with climate change, its loss is one of the two most important planetary boundaries. A halt in biodiversity loss is one of the UN Sustainable Development Goals. Current changes in biodiversity in the vast landmass of Siberia are at an initial stage of inventory, even though the Siberian environment is experiencing rapid climate change, weather extremes and transformation of land use and management. Biodiversity changes affect traditional land use by Indigenous People and multiple ecosystem services with implications for local and national economies. Here we review and analyse a large number of scientific publications, which are little known outside Russia, and we provide insights into Siberian biodiversity issues for the wider international research community. Case studies are presented on biodiversity changes for insect pests, fish, amphibians and reptiles, birds, mammals and steppe vegetation, and we discuss their causes and consequences.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Aves , Cambio Climático , Conservación de los Recursos Naturales , Humanos , Siberia
4.
Ambio ; 50(11): 2038-2049, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33677811

RESUMEN

Peatlands cover 3% of the land, occur in 169 countries, and have-by sequestering 600 Gt of carbon-cooled the global climate by 0.6 °C. After a general review about peatlands worldwide, this paper describes the importance of the Great Vasyugan Mire and presents suggestions about its protection and future research. The World's largest peatland, the Great Vasyugan Mire in West-Siberia, forms the border between the Taiga and the Forest-Steppe biomes and harbours rare species and mire types and globally unique self-organizing patterns. Current oil and gas exploitation may arguably be largely phased out by 2050, which will pave the way for a stronger focus on the mire's role in buffering climate change, maintaining ecosystem diversity, and providing other ecosystem services. Relevant new research lines will benefit from the extensive data sets that earlier studies have gathered for other purposes. Its globally unique character as the 'largest life form on land' qualifies the Great Vasyugan Mire in its entirety to be designated as a UNESCO World Heritage Site and a Ramsar Wetland of International Importance.


Asunto(s)
Ecosistema , Suelo , Cambio Climático , Bosques , Humedales
5.
Ecol Evol ; 8(15): 7401-7420, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30151159

RESUMEN

In this article, we report and discuss the results obtained from a survey of plants, microorganisms (bacteria and fungi), and soil elements along a chronosequence in the first 600 m of the Maliy Aktru glacier's forefront (Altai Mountains, Russia). Many glaciers of the world show effects of climate change. Nonetheless, except for some local reports, the ecological effects of deglaciation have been poorly studied and have not been quantitatively assessed in the Altai Mountains. Here, we studied the ecological changes of plants, fungi, bacteria, and soil elements that take the form of a primary ecological succession and that took place over the deglaciated soil of the Maliy Aktru glacier during the last 50 year. According to our measurements, the glacier lost about 12 m per year during the last 50 years. Plant succession shows clear signs of changes along the incremental distance from the glacier forefront. The analysis of the plant α- and ß-diversity confirmed an expected increase of them with increasing distance from the glacier forefront. Moreover, the analysis of ß-diversity confirmed the hypothesis of the presence of three main stages of the plant succession: (a) initial (pioneer species) from 30 to 100 m; (b) intermediate (r-selected species) from 110 to 120-150 m; and (c) final (K-selected species) from 150 to 550. Our study also shows that saprotrophic communities of fungi are widely distributed in the glacier retreating area with higher relative abundances of saprotroph ascomycetes at early successional stages. The evolution of a primary succession is also evident for bacteria, soil elements, and CO 2 emission and respiration. The development of biological communities and the variation in geochemical parameters represent an irrefutable proof that climate change is altering soils that have been long covered by ice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...