Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Cell Physiol ; 230(1): 43-51, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24760775

RESUMEN

Tumor angiogenesis is accompanied by vasculogenesis, which is involved in the differentiation and mobilization of human bone marrow cells. In order to further characterize the role of vasculogenesis in the tumor growth process, the effects of FGF2 on the differentiation of human bone marrow AC133(+) cells (BM-AC133(+)) into vascular precursors were studied in vitro. FGF2, like VEGFA, induced progenitor cell differentiation into cell types with endothelial cell characteristics. SSR128129E, a newly discovered specific FGFR antagonist acting by allosteric interaction with FGFR, abrogated FGF2-induced endothelial cell differentiation, showing that FGFR signaling is essential during this process. To assess the involvement of the FGF/FRGR signaling in vivo, the pre-clinical model of Lewis lung carcinoma (LL2) in mice was used. Subcutaneous injection of LL2 cells into mice induced an increase of circulating EPCs from peripheral blood associated with tumor growth and an increase of intra-tumoral vascular index. Treatment with the FGFR antagonist SSR128129E strongly decreased LL2 tumor growth as well as the intra-tumoral vascular index (41% and 50% decrease vs. vehicle-treated mice respectively, P < 0.01). Interestingly, SSR128129E treatment significantly decreased the number of circulating EPCs from the peripheral blood (53% inhibition vs. vehicle-treated mice, P < 0.01). These results demonstrate for the first time that the blockade of the FGF/FGFR pathway by SSR128129E reduces EPC recruitment during angiogenesis-dependent tumor growth. In this context, circulating EPCs could be a reliable surrogate marker for tumor growth and angiogenic activity.


Asunto(s)
Carcinoma Pulmonar de Lewis/irrigación sanguínea , Células Madre Hematopoyéticas/citología , Indolizinas/farmacología , Neovascularización Patológica/patología , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , ortoaminobenzoatos/farmacología , Antígeno AC133 , Animales , Antígenos CD/biosíntesis , Células de la Médula Ósea/metabolismo , Adhesión Celular , Diferenciación Celular/efectos de los fármacos , Línea Celular , Movimiento Celular , Células Endoteliales/citología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Glicoproteínas/biosíntesis , Humanos , Ratones , Ratones Endogámicos C57BL , Péptidos , ARN Mensajero/biosíntesis , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal
3.
PLoS One ; 9(11): e113215, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25405900

RESUMEN

RGS18 is a myeloerythroid lineage-specific regulator of G-protein signaling, highly expressed in megakaryocytes (MKs) and platelets. In the present study, we describe the first generation of a RGS18 knockout mouse model (RGS18-/-). Interesting phenotypic differences between RGS18-/- and wild-type (WT) mice were identified, and show that RGS18 plays a significant role in both platelet generation and function. RGS18 deficiency produced a gain of function phenotype in platelets. In resting platelets, the level of CD62P expression was increased in RGS18-/- mice. This increase correlated with a higher level of plasmatic serotonin concentration. RGS18-/- platelets displayed a higher sensitivity to activation in vitro. RGS18 deficiency markedly increased thrombus formation in vivo. In addition, RGS18-/- mice presented a mild thrombocytopenia, accompanied with a marked deficit in MK number in the bone marrow. Analysis of MK maturation in vitro and in vivo revealed a defective megakaryopoiesis in RGS18-/- mice, with a lower bone marrow content of only the most committed MK precursors. Finally, RGS18 deficiency was correlated to a defect of platelet recovery in vivo under acute conditions of thrombocytopenia. Thus, we highlight a role for RGS18 in platelet generation and function, and provide additional insights into the physiology of RGS18.


Asunto(s)
Megacariocitos/metabolismo , Activación Plaquetaria/fisiología , Proteínas RGS/genética , Proteínas RGS/metabolismo , Transducción de Señal/fisiología , Análisis de Varianza , Animales , Recuento de Células Sanguíneas , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Filogenia , Activación Plaquetaria/genética , Regiones Promotoras Genéticas/genética , Serotonina/sangre , Transducción de Señal/genética , Trombosis/metabolismo
4.
Nat Methods ; 10(1): 77-83, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23202434

RESUMEN

Lineage conversion of one somatic cell type to another is an attractive approach for generating specific human cell types. Lineage conversion can be direct, in the absence of proliferation and multipotent progenitor generation, or indirect, by the generation of expandable multipotent progenitor states. We report the development of a reprogramming methodology in which cells transition through a plastic intermediate state, induced by brief exposure to reprogramming factors, followed by differentiation. We use this approach to convert human fibroblasts to mesodermal progenitor cells, including by non-integrative approaches. These progenitor cells demonstrated bipotent differentiation potential and could generate endothelial and smooth muscle lineages. Differentiated endothelial cells exhibited neo-angiogenesis and anastomosis in vivo. This methodology for indirect lineage conversion to angioblast-like cells adds to the armamentarium of reprogramming approaches aimed at the study and treatment of ischemic pathologies.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Reprogramación Celular , Endotelio Vascular/citología , Fibroblastos/citología , Miocitos del Músculo Liso/citología , Células Madre/citología , Animales , Biomarcadores/metabolismo , Western Blotting , Movimiento Celular , Proliferación Celular , Células Cultivadas , Endotelio Vascular/metabolismo , Fibroblastos/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Miocitos del Músculo Liso/metabolismo , Neovascularización Fisiológica , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/metabolismo
5.
Protein Cell ; 3(12): 934-42, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23161332

RESUMEN

Articular cartilage, which is mainly composed of collagen II, enables smooth skeletal movement. Degeneration of collagen II can be caused by various events, such as injury, but degeneration especially increases over the course of normal aging. Unfortunately, the body does not fully repair itself from this type of degeneration, resulting in impaired movement. Microfracture, an articular cartilage repair surgical technique, has been commonly used in the clinic to induce the repair of tissue at damage sites. Mesenchymal stem cells (MSC) have also been used as cell therapy to repair degenerated cartilage. However, the therapeutic outcomes of all these techniques vary in different patients depending on their age, health, lesion size and the extent of damage to the cartilage. The repairing tissues either form fibrocartilage or go into a hypertrophic stage, both of which do not reproduce the equivalent functionality of endogenous hyaline cartilage. One of the reasons for this is inefficient chondrogenesis by endogenous and exogenous MSC. Drugs that promote chondrogenesis could be used to induce self-repair of damaged cartilage as a non-invasive approach alone, or combined with other techniques to greatly assist the therapeutic outcomes. The recent development of human induced pluripotent stem cell (iPSCs), which are able to self-renew and differentiate into multiple cell types, provides a potentially valuable cell resource for drug screening in a "more relevant" cell type. Here we report a screening platform using human iPSCs in a multi-well plate format to identify compounds that could promote chondrogenesis.


Asunto(s)
Condrogénesis/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Diferenciación Celular/efectos de los fármacos , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Genes Reporteros/genética , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Luciferasas/genética , Péptidos/síntesis química , Péptidos/metabolismo , Reproducibilidad de los Resultados
6.
Development ; 134(16): 3031-40, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17634189

RESUMEN

Cytokine signaling pathways are important in promoting hematopoietic stem cell (HSC) self-renewal, proliferation and differentiation. Mpl receptor and its ligand, TPO, have been shown to play an essential role in the early steps of adult hematopoiesis. We previously demonstrated that the cytoplasmic domain of Mpl promotes hematopoietic commitment of embryonic stem cells in vitro, and postulated that Mpl could be important in the establishment of definitive hematopoiesis. To answer this question, we investigated the temporal expression of Mpl during mouse development by in situ hybridization. We found Mpl expression in the HSCs clusters emerging in the AGM region, and in the fetal liver (FL) as early as E10.5. Using Mpl(-/-) mice, the functional relevance of Mpl expression was tested by comparing the hematopoietic progenitor (HP) content, long-term hematopoietic reconstitution (LTR) abilities and HSC content of control and Mpl(-/-) embryos at different times of development. In the AGM, we observed delayed production of HSCs endowed with normal LTR but presenting a self-renewal defect. During FL development, we detected a decrease in HP and HSC potential associated with a defect in amplification and self-renewal/survival of the lin(-) AA4.1(+) Sca1(+) population of HSCs. These results underline the dual role of Mpl in the generation and expansion of HSCs during establishment of definitive hematopoiesis.


Asunto(s)
Hematopoyesis/genética , Receptores de Trombopoyetina/fisiología , Animales , Aorta/embriología , Aorta/metabolismo , Proliferación Celular , Supervivencia Celular , Embrión de Mamíferos , Endotelio Vascular/embriología , Endotelio Vascular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Receptores de Trombopoyetina/genética , Receptores de Trombopoyetina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...