Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Behav Processes ; 216: 105009, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395238

RESUMEN

Domestic cat (Felis catus) mothers may rely on offspring cries to allocate resources in use of individuals with greater chances for survival and sacrifice the weak ones in case of impossibility to raise the entire large litter. Potential victims of this maternal strategy can enhance their chances of survival, by producing vocalizations with traits mimicking those of higher-quality offspring. We compared acoustic traits of 4990 cries produced during blood sampling by 57 two-week-old captive feral kittens (28 males, 29 females); 47 of them survived to 90 days of age and 10 died by reasons not related to traumas or aggression. No relationship was found between acoustic parameters and kitten survival, however, positive relationship was found between survival and body weight. The cries had moderate cues to individuality and lacked cues to sex. Body weight correlated positively with fundamental frequency and negatively with call rate, duration, peak frequency and power quartiles. We discuss that dishonesty of acoustic traits of kitten quality could develop as adaptation for misleading a mother from allocation resources between the weaker and stronger individuals, thus enhancing individual chances for survival for the weaker littermates. Physical constraint, as body weight, may prevent extensive developing the deceptive vocal traits.


Asunto(s)
Madres , Vocalización Animal , Humanos , Masculino , Animales , Gatos , Femenino , Niño , Agresión , Acústica , Peso Corporal
2.
Behav Processes ; 210: 104917, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37459937

RESUMEN

In mammalian cross-species hybrids, parameters of voice calls, produced by vocal fold vibrations, are intermediate between parental species. Inheritance of ultrasonic calls, produced by whistle mechanism, is unstudied for hybrids. We examined 4000 pup ultrasonic isolation-induced calls for peak power of call fundamental frequency and for call duration in 4-8-day-old captive hamsters of four Study Groups: pure Phodopus sungorus; pure P. campbelli of two populations (Mongolian and Kosh-Agach) and hybrids between male P. sungorus and female P. campbelli (Kosh-Agach). All Study Groups produced two categories of ultrasonic calls: Low-Frequency centered around 41 kHz and High-Frequency centered around 60 kHz, but in different percentages. Between populations, only Low-Frequency calls were shorter and higher-frequency in Mongolian P. campbelli. Between species, only High-Frequency calls were shorter and higher-frequency in P. sungorus. In hybrids, Low-Frequency calls were shorter and lower-frequency than in either parental species, whereas High-Frequency calls were longer and lower-frequency in hybrids than in pure P. sungorus but similar with another parental species. We discuss that interspecific hybridization may give rise to offspring with new properties of ultrasonic calls.


Asunto(s)
Phodopus , Ultrasonido , Cricetinae , Animales , Masculino , Femenino , Especificidad de la Especie
3.
Behav Processes ; 193: 104540, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34774667

RESUMEN

Acoustic individuality is present in diverse taxa of mammals and birds, becoming especially prominent in those age groups for which discriminating conspecifics by voice is critically important. This study compares, for the first time, the ontogenetic changes of acoustic individuality of ultrasonic and audible calls (USVs and AUDs) across 12 age-classes (from neonates to adults) in captive yellow steppe lemmings Eolagurus luteus. We found that, in this rodent species, the isolation-induced USVs and AUDs are not individually distinct at any age. We discuss that this result is unusual, because discriminating individuals by individualistic vocal traits may be important for such a social species as yellow steppe lemming. We also discuss the potential role of acoustic individuality in studies including rodent models.


Asunto(s)
Ultrasonido , Vocalización Animal , Acústica , Animales , Arvicolinae , Roedores
4.
Sci Rep ; 11(1): 14969, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294820

RESUMEN

Potential of ultrasonic vocalizations (USVs) to reflect a degree of discomfort of a caller is mostly investigated in laboratory rats and mice but poorly known in other rodents. We examined 36 (19 male, 17 female) adult yellow steppe lemmings Eolagurus luteus for presence of USVs during 8-min experimental trials including 2-min test stages of increasing discomfort: isolation, touch, handling and body measure. We found that 33 of 36 individuals vocalized at isolation stage, i.e., without any human impact. For 14 (6 male and 8 female) individuals, a repeated measures approach revealed that increasing discomfort from isolation to handling stages resulted in increase of call power quartiles and fundamental frequency, whereas call rate remained unchanged. We discuss that, in adult yellow steppe lemmings, the discomfort-related changes of USV fundamental frequency and power variables follow the same common rule as the audible calls of most mammals, whereas call rate shows a different trend. These data contribute to research focused on searching the universal acoustic cues to discomfort in mammalian USVs.


Asunto(s)
Arvicolinae/fisiología , Espectrografía del Sonido/métodos , Vocalización Animal/fisiología , Animales , Femenino , Masculino , Aislamiento Social , Ultrasonido
5.
Naturwissenschaften ; 108(4): 30, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34185170

RESUMEN

This study investigates a population of red deer Cervus elaphus, founded by 10 individuals introduced in the nineteenth century from Germany to the Voronezh region of the European part of Southern Russia and then developed without further introductions. We characterize for the first time the vocal phenotype of the Voronezh red deer male rutting calls in comparison with similar data on the Pannonian (native Central European) and Iberian (native West European) red deer obtained by the authors during preceding studies. In addition, we provide for the first time the genetic data on Pannonian red deer. In Voronezh stags, the number of roars per bout (2.85 ± 1.79) was lower than in Pannonian (3.18 ± 2.17) but higher than in Iberian (2.11 ± 1.71) stags. In Voronezh stags, the duration of main (the longest within bouts) roars was longer (2.46 ± 1.14 s) than in Pannonian (1.13 ± 0.50 s) or Iberian (1.90 ± 0.50 s) stags. The maximum fundamental frequency of main roars was similar between Voronezh (175 ± 60 Hz) and Pannonian (168 ± 61 Hz) but higher in Iberian stags (223 ± 35 Hz). Mitochondrial cytochrome b gene analysis of red deer from the three study populations partially supports the bioacoustical data, of closer similarity between Voronezh and Pannonian populations. In contrast, microsatellite DNA analysis delineates Voronezh red deer from either Pannonian or Iberian red deer. We discuss that population bottlenecking might affect the acoustics of the rutting roars, in addition to genotype.


Asunto(s)
Ciervos , Acústica , Animales , Ciervos/genética , Marcadores Genéticos , Masculino , Fenotipo , Vocalización Animal
6.
Behav Brain Res ; 412: 113430, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34182007

RESUMEN

This study discovered a novel acoustic phenotype in Calsyntenin2 deficient knockout (Clstn2-KO) pups in the neurodevelopment period of 5-9 postnatal days (PND 5-9). The narrowband ultrasonic calls (nUSVs) were less complex (mostly one-note, shorter in duration and higher in peak frequency) in Clsnt2-KO than in wild-type (WT) C57BL/6 J pups. The wideband ultrasonic calls (wUSVs) were produced substantially more often by Clstn2-KO than WT pups. The clicks were longer in duration and higher in peak frequency and power quartiles in Clstn2-KO pups. The elevated discomfort due to additional two-minute maternal separation coupled with experimenter's touch, resulted in significantly higher call rates of both nUSVs and clicks in pups of both genotypes and sexes compared to the previous two-minute maternal separation, whereas the call rate of wUSVs was not affected. In Clstn2-KO pups, the prevalence of emission of wUSVs retained at both sex and both degrees of discomfort, thus providing a reliable quantitative acoustic indicator for this genetic line. Besides the acoustic differences, we also detected the increased head-to-body ratio in Clstn2-KO pups. Altogether, this study demonstrated that lack of such synaptic adhesion protein as calsyntenin2 affects neurodevelopment of vocalization in a mouse as a model organism.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Vocalización Animal/fisiología , Acústica , Animales , Trastorno del Espectro Autista/metabolismo , Proteínas de Unión al Calcio/genética , Modelos Animales de Enfermedad , Femenino , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Ultrasonido
7.
R Soc Open Sci ; 8(3): 201558, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33959325

RESUMEN

Among Gerbillinae rodents, ultrasonic calls of adults of small-sized species are typically higher frequency than those of adults of large-sized species. This study investigates whether a similar relationship can be found in pups of six gerbil species (Dipodillus campestris, Gerbillus perpallidus, Meriones unguiculatus, Meriones vinogradovi, Sekeetamys calurus and Pachyuromys duprasi). We compared the average values of acoustic variables (duration, fundamental and peak frequency) of ultrasonic calls (20 calls per pup, 1200 in total) recorded from 6- to 10-day-old pups (10 pups per species, 60 in total) isolated for 2 min at 22°C and then weighed and measured for body variables. The longest calls (56 ± 33 ms) were found in the largest species, and the highest frequency calls (74.8 ± 5.59 kHz) were found in the smallest species. However, across species, call duration (ranging from 56 to 159 ms among species) did not display a significant relationship with pup body size; and, among frequency variables, only the minimum fundamental frequency depended on pup body size. Discriminant analysis assigned 100% of calls to the correct species. The effect of species identity on the acoustics was stronger than the effect of body size. We discuss these results with the hypotheses of acoustic adaptation, social complexity, hearing ranges and phylogeny.

8.
Curr Zool ; 67(2): 165-176, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33854534

RESUMEN

In domestic dogs Canis familiaris, vocal traits have been investigated for barks and growls, and the relationship between individual body size and vocal traits investigated for growls, with less corresponding information for whines. In this study, we examined the frequency and temporal traits of whines of 20 adult companion dogs (9 males, 11 females), ranging in body mass from 3.5 to 70.0 kg and belonging to 16 breeds. Dog whines (26-71 per individual, 824 in total) were recorded in conditioned begging contexts modeled by dog owners. Whines had 3 independent fundamental frequencies: the low, the high and the ultra-high that occurred singly as monophonic calls or simultaneously as 2-voice biphonic or 3-voice polyphonic calls. From the smallest to largest dog, the upper frequency limit varied from 0.24 to 2.13 kHz for the low fundamental frequency, from 2.95 to 10.46 kHz for the high fundamental frequency and from 9.99 to 23.26 kHz for the ultra-high fundamental frequency. Within individuals, the low fundamental frequency was lower in monophonic than in biphonic whines, whereas the high fundamental frequency did not differ between those whine types. All frequency variables of the low, high, and ultra-high fundamental frequencies correlated negatively with dog body mass. For duration, no correlation with body mass was found. We discuss potential production mechanisms and sound sources for each fundamental frequency; point to the acoustic similarity between high-frequency dog whines and rodent ultrasonic calls and hypothesize that ultra-high fundamental frequencies function to allow private, "tete-a-tete" communication between members of social groups.

9.
Front Zool ; 18(1): 2, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413460

RESUMEN

BACKGROUND: The rutting vocal display of male impala Aepyceros melampus is unique for its complexity among ruminants. This study investigates bouts of rutting calls produced towards potential mates and rival males by free-ranging male impala in Namibia. In particular, a comparison of male rutting and alarm snorts is conducted, inspired by earlier findings of mate guarding by using alarm snorts in male topi Damaliscus lunatus. RESULTS: Rutting male impala produced 4-38 (13.5 ± 6.5) rutting calls per bout. We analyzed 201 bouts, containing in total 2709 rutting calls of five types: continuous roars produced within a single exhalation-inhalation cycle; interrupted roars including few exhalation-inhalation cycles; pant-roars distinctive by a pant-phase with rapidly alternating inhalations and exhalations; usual snorts lacking any roar part; and roar-snorts starting with a short roar part. Bouts mostly started and ended with usual snorts. Continuous roars were the shortest roars. The average duration of the exhalatory phase was longest in the continuous roars and shortest in the pant-roars. The average fundamental frequency (49.7-51.4 Hz) did not differ between roar types. Vocal tract length, calculated by using measurements of the first four vocal tract resonances (formants), ranged within 381-382 mm in all roar types. In the studied male impala, rutting snorts within bouts of rutting calls were longer and had higher values of the upper quartile in the call spectra than alarm snorts produced towards potential danger. CONCLUSIONS: Additional inhalations during the emission of the interrupted and pant-roars prolong their duration compared to the continuous roars but do not affect the fundamental frequency or the degree of larynx retraction while roaring. Alarm snorts are separated from one another by large intervals, whereas the intervals between rutting snorts within bouts are short. Sometimes, rutting snorts alternate with roars, whereas alarm snorts do not. Therefore, it is not the acoustic structure of individual snorts but the temporal sequence and the occasional association with another call type that defines snorts as either rutting or alarm snorts. The rutting snorts of male impala may function to attract the attention of receptive females and delay their departure from a male's harem or territory.

10.
BMC Zool ; 6(1): 27, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37170373

RESUMEN

BACKGROUND: Rodents are thought to be produced their human-audible calls (AUDs, below 20 kHz) with phonation mechanism based on vibration of the vocal folds, whereas their ultrasonic vocalizations (USVs, over 20 kHz) are produced with aerodynamic whistle mechanism. Despite of different production mechanisms, the acoustic parameters (duration and fundamental frequency) of AUDs and USVs change in the same direction along ontogeny in collared lemming Dicrostonyx groenlandicus and fat-tailed gerbil Pachyuromys duprasi. We hypothesize that this unidirectional trend of AUDs and USVs is a common rule in rodents and test whether the AUDs of yellow steppe lemmings Eolagurus luteus would display the same ontogenetic trajectory (towards shorter and low-frequency calls) as their USVs, studied previously in the same laboratory colony. RESULTS: We examined for acoustic variables 1200 audible squeaks emitted during 480-s isolation-and-handling procedure by 120 individual yellow steppe lemmings (at 12 age classes from neonates to breeding adults, 10 individuals per age class, up to 10 calls per individual, each individual tested once). We found that the ontogenetic pathway of the audible squeaks, towards shorter and lower frequency calls, was the same as the pathway of USVs revealed during 120-s isolation procedure in a previous study in the same laboratory population. Developmental milestone for the appearance of mature patterns of the squeaks (coinciding with eyes opening at 9-12 days of age), was the same as previously documented for USVs. Similar with ontogeny of USVs, the chevron-like squeaks were prevalent in neonates whereas the squeaks with upward contour were prevalent after the eyes opening. CONCLUSION: This study confirms a hypothesis of common ontogenetic trajectory of call duration and fundamental frequency for AUDs and USVs within species in rodents. This ontogenetic trajectory is not uniform across species.

11.
Behav Processes ; 180: 104241, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32971224

RESUMEN

Ontogeny of audible and ultrasonic calls is poorly studied in Gerbillinae rodents. In this study, analysis of calls, emitted by pup and adult fat-tailed gerbils Pachyuromys duprasi during 420-s isolation-and-handling procedures, allowed testing two hypotheses. Hypothesis1 predicted that audible squeaks and clicks follow the same ontogenetic pathway (towards higher-frequency and shorter calls) that has been previously documented for the ultrasonic calls of fat-tailed gerbil. Hypothesis2 predicted that the audible call types would alternate with the ultrasonic call types along ontogeny in this species. Hypothesis1 was tested with comparison of acoustic variables of audible calls (squeaks and clicks), emitted by 1-10-day old pups and by adults. Clicks of 8.3-8.7 kHz and high-frequency squeaks of 1.92-3.57 kHz were present in pups and adults, whereas mid-frequency squeaks of 0.31-0.67 kHz and low-frequency squeaks of 0.04-0.11 kHz were only present in pups. In agreement with Hypothesis1, pup high-frequency squeaks were longer, lower in fundamental frequency and higher in peak frequency. Against predictions, clicks did not differ acoustically between pups and adults. Hypothesis2 was tested with comparison of percentages of test trials containing the audible and/or ultrasonic call types of pups, repeatedly tested in 15 age classes along ontogeny from 1 to 40 days of age and in adults. The audible calls occurred in all age classes, whereas the ultrasonic calls emerged from day five of pup life and then prevailed over the audible squeaks in all age classes. We discuss that, in fat-tailed gerbil, ontogenetic pathways of acoustic variables of audible and ultrasonic calls (towards higher-frequency and shorter calls) are unusual for rodents although are typical for social and echolocation calls of bats. The is another parallelism of acoustic communication between bats and rodents aside from the recently discovered similarity between bat ultrasonic echolocation and echo-based navigation with bouts of ultrasonic calls in blind leaping rodents.


Asunto(s)
Ecolocación , Gerbillinae/fisiología , Ultrasonido , Vocalización Animal , Acústica , Animales
12.
PLoS One ; 15(2): e0228892, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32045453

RESUMEN

Ultrasonic vocalizations (USV) of laboratory rodents may serve as age-dependent indicators of emotional arousal and anxiety. Fast-growing Arvicolinae rodent species might be advantageous wild-type animal models for behavioural and medical research related to USV ontogeny. For the yellow steppe lemming Eolagurus luteus, only audible calls of adults were previously described. This study provides categorization and spectrographic analyses of 1176 USV calls emitted by 120 individual yellow steppe lemmings at 12 age classes, from birth to breeding adults over 90 days (d) of age, 10 individuals per age class, up to 10 USV calls per individual. The USV calls emerged since 1st day of pup life and occurred at all 12 age classes and in both sexes. The unified 2-min isolation procedure on an unfamiliar territory was equally applicable for inducing USV calls at all age classes. Rapid physical growth (1 g body weight gain per day from birth to 40 d of age) and the early (9-12 d) eyes opening correlated with the early (9-12 d) emergence of mature vocal patterns of USV calls. The mature vocal patterns included a prominent shift in percentages of chevron and upward contours of fundamental frequency (f0) and the changes in the acoustic variables of USV calls. Call duration was the longest at 1-4 d, significantly shorter at 9-12 d and did not between 9-12-d and older age classes. The maximum fundamental frequency (f0max) decreased with increase of age class, from about 50 kHz in neonates to about 40 kHz in adults. These ontogenetic pathways of USV duration and f0max (towards shorter and lower-frequency USV calls) were reminiscent of those in laboratory mice Mus musculus.


Asunto(s)
Vocalización Animal/clasificación , Vocalización Animal/fisiología , Acústica , Animales , Arvicolinae/crecimiento & desarrollo , Arvicolinae/metabolismo , Emociones/fisiología , Femenino , Masculino , Conducta Social , Espectrografía del Sonido/métodos , Ondas Ultrasónicas , Ultrasonido/métodos
13.
J Anat ; 236(3): 398-424, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31777085

RESUMEN

A retractable larynx and adaptations of the vocal folds in the males of several polygynous ruminants serve for the production of rutting calls that acoustically announce larger than actual body size to both rival males and potential female mates. Here, such features of the vocal tract and of the sound source are documented in another species. We investigated the vocal anatomy and laryngeal mobility including its acoustical effects during the rutting vocal display of free-ranging male impala (Aepyceros melampus melampus) in Namibia. Male impala produced bouts of rutting calls (consisting of oral roars and interspersed explosive nasal snorts) in a low-stretch posture while guarding a rutting territory or harem. For the duration of the roars, male impala retracted the larynx from its high resting position to a low mid-neck position involving an extensible pharynx and a resilient connection between the hyoid apparatus and the larynx. Maximal larynx retraction was 108 mm based on estimates in video single frames. This was in good concordance with 91-mm vocal tract elongation calculated on the basis of differences in formant dispersion between roar portions produced with the larynx still ascended and those produced with maximally retracted larynx. Judged by their morphological traits, the larynx-retracting muscles of male impala are homologous to those of other larynx-retracting ruminants. In contrast, the large and massive vocal keels are evolutionary novelties arising by fusion and linear arrangement of the arytenoid cartilage and the canonical vocal fold. These bulky and histologically complex vocal keels produced a low fundamental frequency of 50 Hz. Impala is another ruminant species in which the males are capable of larynx retraction. In addition, male impala vocal folds are spectacularly specialized compared with domestic bovids, allowing the production of impressive, low-frequency roaring vocalizations as a significant part of their rutting behaviour. Our study expands knowledge on the evolutionary variation of vocal fold morphology in mammals, suggesting that the structure of the mammalian sound source is not always human-like and should be considered in acoustic analysis and modelling.


Asunto(s)
Antílopes/anatomía & histología , Músculos Laríngeos/anatomía & histología , Laringe/anatomía & histología , Vocalización Animal/fisiología , Acústica , Animales , Antílopes/fisiología , Músculos Laríngeos/fisiología , Laringe/fisiología , Masculino , Pliegues Vocales/anatomía & histología , Pliegues Vocales/fisiología
14.
BMC Res Notes ; 12(1): 677, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31640790

RESUMEN

OBJECTIVES: This is the first study of the sonic and ultrasonic vocalization in a Dipodidae rodent. For the small-sized quadrupedal northern birch mouse Sicista betulina, phylogenetically related to the bipedal jerboas (Dipodidae), we report null results for ultrasonic vocalization and investigate the acoustic cues to individual identity, sex and body size in the discomfort-related high-frequency tonal sonic calls. RESULTS: We used a parallel audio recording in the sonic and ultrasonic ranges during weighting adult northern birch mice before the scheduled hibernation in captivity. The sonic (audible) high-frequency tonal calls (ranging from 6.21 to 9.86 kHz) were presented in all individuals (7 males and 4 females). The ultrasonic calls lacked in the recordings. Two-way nested ANOVA revealed the effects of caller individual identity on all 10 measured acoustic variables and the effects of sex on four out of 10 measured acoustic variables. Discriminant function analyses with 10 acoustic variables included in the analysis showed 85.5% correct assignment of calls to individual and 79.7% correct assignment of calls to sex; both values significantly exceeded the random values (23.1% and 54.3%, respectively) calculated with randomization procedure. Body mass did not differ between sexes and did not correlate significantly with the acoustic variables.


Asunto(s)
Tamaño Corporal/fisiología , Roedores/fisiología , Conducta Sexual Animal/fisiología , Vocalización Animal/fisiología , Acústica/instrumentación , Animales , Análisis Discriminante , Femenino , Manejo Psicológico , Masculino , Roedores/psicología , Espectrografía del Sonido , Ultrasonido/instrumentación
15.
PLoS One ; 14(7): e0219749, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31356642

RESUMEN

Ultrasonic vocalizations (USVs) of laboratory rodents indicate animal emotional arousal and may serve as models of human disorders. We analysed spectrographically USV calls of pup and adult fat-tailed gerbils Pachyuromys duprasi during 420-s tests, including isolation, touch and handling. Based on combination of six different USV syllable contour shapes and six different note compositions, we classified 782 USV syllables of 24 pups aged 5-10 days to 18 types and 232 syllables of 7 adults to 24 types. Pups and adults shared 16 of these 26 USV types. Percentages of USV syllables with certain contour shapes differed between pups and adults. The contour shape and note composition significantly affected most acoustic variables of USV syllables in either pups or adults. The 1-note USV syllables were most common in either pups or adults. Pup USV syllables were overall longer and higher-frequency than adult ones, reminiscent of the USV ontogenetic pathway of bats and distinctive to rats and mice. We discuss that the USV syllable types of fat-tailed gerbils were generally similar in contour shapes and note compositions with USV syllable types of mice and rats, what means that software developed for automated classifying of mice ultrasound might be easily adapted or re-tuned to gerbil USV calls. However, using fat-tailed gerbils as model for biomedical research including control of USV vocalization is only possible since 6th day of pup life, because of the delayed emergence of USV calls in ontogeny of this species.


Asunto(s)
Envejecimiento/fisiología , Gerbillinae/fisiología , Ultrasonido , Vocalización Animal/fisiología , Acústica , Análisis de Varianza , Animales , Animales Recién Nacidos , Femenino , Masculino
16.
Integr Zool ; 14(4): 341-353, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30688033

RESUMEN

Distribution area and taxonomic borders within the species complex Spermophilus erythrogenys sensu lato remain questionable. Early evidence suggests that red-cheeked ground squirrels of Southeast Kazakhstan are remarkably different in terms of the acoustic structure of their alarm calls from the red-cheeked ground squirrels of the Kurgan region in Russia. In this study, we analyzed the differences in the acoustic structure of the alarm call and mitochondrial DNA (complete control region, 1005-1006 bp and complete cytochrome b gene, 1140 bp) in 3 populations of red-cheeked ground squirrels (Tara, Altyn-Emel and Balkhash), all located within areas isolated by geographical barriers in Southeast Kazakhstan. We found that the alarm call variables were similar between the 3 study populations and differed by the maximum fundamental frequency (8.46 ± 0.75 kHz) from the values (5.62 ± 0.06 kHz) reported for the red-cheeked ground squirrels from the Kurgan region of Russia. Variation in mtDNA control region was only 3% and variation in cytochrome b gene was only 2.5%. Phylogenetic trees based on cytochrome b gene polymorphism of 44 individuals from the study area and adjacent territories indicated 3 clades with high (98-100%) bootstrap support: "intermedius," "brevicauda" and "iliensis"). We conclude that the 3 study populations in Southeast Kazakhstan belong to the clade intermedius and suggest a taxonomical revision of the species complex Spermophilus erythrogenys sensu lato, including analyses of nuclear DNA and alarm calls for populations of the brevicauda and iliensis clades.


Asunto(s)
Distribución Animal , Filogenia , Sciuridae/genética , Sciuridae/fisiología , Vocalización Animal/fisiología , Animales , ADN , Polimorfismo Genético , Especificidad de la Especie
17.
BMC Res Notes ; 11(1): 737, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333068

RESUMEN

OBJECTIVES: Studying animal vocal aging has potential implication in the field of animal welfare and for modeling human voice aging. The objective was to examine, using a repeated measures approach, the between-year changes of weight, social discomfort score (bites of other hinds on hind pelt), body condition score (fat reserves) and acoustic variables of the nasal (closed-mouth) and the oral (open-mouth) contact calls produced by farmed red deer hinds (Cervus elaphus) toward their young. RESULTS: Repeated measures ANOVA revealed that with an increase of hind age for 1 year, the acoustic variables of their nasal contact calls (the beginning and maximum fundamental frequencies, the depth of frequency modulation and the peak frequency) decreased, whereas in their oral contact calls only the end fundamental frequency decreased. Duration and power quartiles did not change in any call type. Body weight and body condition score increased between years, whereas discomfort score decreased. Results of this study revealed directly the short-term effects of aging on the acoustics of the nasal contact calls in the same hinds. This study also confirmed that elevated emotional arousal during emission of the oral contact masks the effects of aging on vocalization in female red deer.


Asunto(s)
Envejecimiento/fisiología , Ciervos/fisiología , Vocalización Animal/fisiología , Acústica , Factores de Edad , Animales , Femenino
18.
Naturwissenschaften ; 105(7-8): 40, 2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-29892847

RESUMEN

Non-hibernating pikas collect winter food reserves and store them in hay piles. Individualization of alarm calls might allow discrimination between colony members and conspecifics trying to steal food items from a colony pile. We investigated vocal posture, vocal tract length, and individual acoustic variation of alarm calls, emitted by wild-living Altai pikas Ochotona alpina toward a researcher. Recording started when a pika started calling and lasted as long as possible. The alarm call series of 442 individual callers from different colonies consisted of discrete short (0.073-0.157 s), high-frequency (7.31-15.46 kHz), and frequency-modulated calls separated by irregular intervals. Analysis of 442 discrete calls, the second of each series, revealed that 44.34% calls lacked nonlinear phenomena, in 7.02% nonlinear phenomena covered less than half of call duration, and in 48.64% nonlinear phenomena covered more than half of call duration. Peak frequencies varied among individuals but always fitted one of three maxima corresponding to the vocal tract resonance frequencies (formants) calculated for an estimated 45-mm oral vocal tract. Discriminant analysis using variables of 8 calls per series of 36 different callers, each from a different colony, correctly assigned over 90% of the calls to individuals. Consequently, Altai pika alarm calls are individualistic and nonlinear phenomena might further increase this acoustic individualization. Additionally, video analysis revealed a call-synchronous, very fast (0.13-0.23 s) folding, depression, and subsequent re-expansion of the pinna confirming an earlier report of this behavior that apparently contributes to protecting the hearing apparatus from damage by the self-generated high-intensity alarm calls.


Asunto(s)
Lagomorpha/fisiología , Vocalización Animal , Acústica , Animales , Oído/fisiología , Grabación en Video
19.
BMC Res Notes ; 11(1): 12, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29316966

RESUMEN

OBJECTIVES: Vocalization as part of vigilance behaviour is widespread across animal taxa, including ruminants. Calls of wild-living giraffes have never been recorded and spectrographically investigated. This study reports the acoustic structure of vigilance-related hiss and snort calls of wild-living giraffes Giraffa camelopardalis. RESULTS: The hiss and snort calls were emitted during five recording sessions produced by nine individual giraffes (8 adults and 1 subadult) in their natural environment in Namibia (3 individuals) and Kenya (6 individuals). These calls attended vigilance behaviour toward humans in hides or in vehicles and cheetahs as natural predators of giraffe young. This study provides spectrographic analyses of 22 hiss and 20 snort calls. The giraffe hisses were broadband vocalizations of an average duration of 0.72 s (from 0.24 to 1.04 s) and a peak frequency of 0.69 kHz. The giraffe snorts were broadband pulsed calls of an average duration of 0.28 s (from 0.13 to 0.55 s), a peak frequency at 0.20 kHz and comprised a prominent low-frequency pulsation of 23.7 pulses/s. The acoustic structure of giraffe hisses is reminiscent of vigilance-related hisses of musk deer Moschus moschiferus. Giraffe snorts differ from snorts of other ruminants by their prominent pulsed pattern.


Asunto(s)
Jirafas/fisiología , Vocalización Animal/fisiología , Acústica , Animales , Femenino , Kenia , Masculino , Namibia , Espectrografía del Sonido
20.
Naturwissenschaften ; 104(5-6): 50, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28578533

RESUMEN

In neonate ruminants, the acoustic structure of vocalizations may depend on sex, vocal anatomy, hormonal profiles and body mass and on environmental factors. In neonate wild-living Mongolian gazelles Procapra gutturosa, hand-captured during biomedical monitoring in the Daurian steppes at the Russian-Mongolian border, we spectrographically analysed distress calls and measured body mass of 22 individuals (6 males, 16 females). For 20 (5 male, 15 female) of these individuals, serum testosterone levels were also analysed. In addition, we measured relevant dimensions of the vocal apparatus (larynx, vocal folds, vocal tract) in one stillborn male Mongolian gazelle specimen. Neonate distress calls of either sex were high in maximum fundamental frequency (800-900 Hz), but the beginning and minimum fundamental frequencies were significantly lower in males than in females. Body mass was larger in males than in females. The levels of serum testosterone were marginally higher in males. No correlations were found between either body mass or serum testosterone values and any acoustic variable for males and females analysed together or separately. We discuss that the high-frequency calls of neonate Mongolian gazelles are more typical for closed-habitat neonate ruminants, whereas other open-habitat neonate ruminants (goitred gazelle Gazella subgutturosa, saiga antelope Saiga tatarica and reindeer Rangifer tarandus) produce low-frequency (<200 Hz) distress calls. Proximate cause for the high fundamental frequency of distress calls of neonate Mongolian gazelles is their very short, atypical vocal folds (4 mm) compared to the 7-mm vocal folds of neonate goitred gazelles, producing distress calls as low as 120 Hz.


Asunto(s)
Animales Recién Nacidos/fisiología , Antílopes/anatomía & histología , Antílopes/fisiología , Vocalización Animal/fisiología , Animales , Ecosistema , Femenino , Masculino , Mongolia , Federación de Rusia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...