Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Kidney Int Rep ; 8(1): 91-102, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36644349

RESUMEN

Introduction: The introduction of eculizumab has improved the outcome in patients with atypical hemolytic uremic syndrome (aHUS). The optimal treatment strategy is debated. Here, we report the results of the CUREiHUS study, a 4-year prospective, observational study monitoring unbiased eculizumab discontinuation in Dutch patients with aHUS after 3 months of therapy. Methods: All pediatric and adult patients with aHUS in native kidneys and a first-time eculizumab treatment were evaluated. In addition, an extensive cost-consequence analysis was conducted. Results: A total of 21 patients were included in the study from January 2016 to October 2020. In 17 patients (81%), a complement genetic variant or antibodies against factor H were identified. All patients showed full recovery of hematological thrombotic microangiopathy (TMA) parameters after the start of eculizumab. A renal response was noted in 18 patients. After a median treatment duration of 13.6 weeks (range 2.1-43.9), eculizumab was withdrawn in all patients. During follow-up (80.7 weeks [0.0-236.9]), relapses occurred in 4 patients. Median time to first relapse was 19.5 (14.3-53.6) weeks. Eculizumab was reinitiated within 24 hours in all relapsing patients. At last follow-up, there were no chronic sequelae, i.e., no clinically relevant increase in serum creatinine (sCr), proteinuria, and/or hypertension in relapsing patients. The low sample size and event rate did not allow to determine predictors of relapse. However, relapses only occurred in patients with a likely pathogenic variant. The cost-effectiveness analysis revealed that the total medical expenses of our population were only 30% of the fictive expenses that would have been made when patients received eculizumab every fortnight. Conclusion: It is safe and cost-effective to discontinue eculizumab after 3 months of therapy in patients with aHUS in native kidneys. Larger data registries are needed to determine factors associated with suboptimal kidney function recovery during eculizumab treatment, factors to predict relapses, and long-term outcomes of eculizumab discontinuation.

2.
Nephrol Dial Transplant ; 38(2): 362-371, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35238929

RESUMEN

BACKGROUND: Eculizumab is a lifesaving yet expensive drug for atypical haemolytic uraemic syndrome (aHUS). Current guidelines advise a fixed-dosing schedule, which can be suboptimal and inflexible in the individual patient. METHODS: We evaluated the pharmacokinetics (PK) and pharmacodynamics (PD) [classical pathway (CP) activity levels] of eculizumab in 48 patients, consisting of 849 time-concentration data and 569 CP activity levels. PK-PD modelling was performed with non-linear mixed-effects modelling. The final model was used to develop improved dosing strategies. RESULTS: A PK model with parallel linear and non-linear elimination rates best described the data with the parameter estimates clearance 0.163 L/day, volume of distribution 6.42 L, maximal rate 29.6 mg/day and concentration for 50% of maximum rate 37.9 mg/L. The PK-PD relation between eculizumab concentration and CP activity was described using an inhibitory Emax model with the parameter estimates baseline 101%, maximal inhibitory effect 95.9%, concentration for 50% inhibition 22.0 mg/L and  Hill coefficient 5.42. A weight-based loading dose, followed by PK-guided dosing was found to improve treatment. On day 7, we predict 99.95% of the patients to reach the efficacy target (CP activity <10%), compared with 94.75% with standard dosing. Comparable efficacy was predicted during the maintenance phase, while the dosing interval could be prolonged in ∼33% of the population by means of individualized dosing. With a fixed-dose 4-week dosing interval to allow for holidays, treatment costs will increase by 7.1% and we predict 91% of the patients will reach the efficacy target. CONCLUSIONS: A patient-friendly individualized dosing strategy of eculizumab has the potential to improve treatment response at reduced costs.


Asunto(s)
Síndrome Hemolítico Urémico Atípico , Humanos , Síndrome Hemolítico Urémico Atípico/tratamiento farmacológico , Análisis Costo-Beneficio , Anticuerpos Monoclonales Humanizados/uso terapéutico
3.
Front Immunol ; 13: 1036136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451820

RESUMEN

Nephritic factors (NeFs) are autoantibodies promoting the activity of the central enzymes of the complement cascade, an important first line of defense of our innate immune system. NeFs stabilize the complement convertase complexes and prevent their natural and regulator-mediated decay. They are mostly associated with rare complement-mediated kidney disorders, in particular with C3 glomerulopathy and related diseases. Although these autoantibodies were already described more than 50 years ago, measuring NeFs for diagnostic purposes remains difficult, and this also complicates our understanding of their clinical associations. In this review, we address the multifactorial challenges of NeF diagnostics. We describe the diseases NeFs are associated with, the heterogenic mechanisms of action of different NeF types, the different methods available in laboratories used for their detection, and efforts for standardization. Finally, we discuss the importance of proper NeF diagnostics for understanding the clinical impact of these autoantibodies in disease pathophysiology and for considering future complement-directed therapy.


Asunto(s)
Activación de Complemento , Técnicas y Procedimientos Diagnósticos , Humanos , Riñón , Autoanticuerpos , Laboratorios , Enfermedades Raras
4.
Hum Mol Genet ; 31(3): 455-470, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34508573

RESUMEN

Age-related macular degeneration (AMD) is a major cause of vision loss among the elderly in the Western world. Genetic variants in the complement factor H (CFH) gene are associated with AMD, but the functional consequences of many of these variants are currently unknown. In this study, we aimed to determine the effect of 64 rare and low-frequency variants in the CFH gene on systemic levels of factor H (FH) and complement activation marker C3bBbP using plasma samples of 252 carriers and 159 non-carriers. Individuals carrying a heterozygous nonsense, frameshift or missense variant in CFH presented with significantly decreased FH levels and significantly increased C3bBbP levels in plasma compared to non-carrier controls. FH and C3bBbP plasma levels were relatively stable over time in samples collected during follow-up visits. Decreased FH and increased C3bBbP concentrations were observed in carriers compared to non-carriers of CFH variants among different AMD stages, with the exception of C3bBbP levels in advanced AMD stages, which were equally high in carriers and non-carriers. In AMD families, FH levels were decreased in carriers compared to non-carriers, but C3bBbP levels did not differ. Rare variants in the CFH gene can lead to reduced FH levels or reduced FH function as measured by increased C3bBbP levels. The effects of individual variants in the CFH gene reported in this study will improve the interpretation of rare and low-frequency variants observed in AMD patients in clinical practice.


Asunto(s)
Degeneración Macular , Polimorfismo de Nucleótido Simple , Anciano , Factor H de Complemento/genética , Proteínas del Sistema Complemento/genética , Heterocigoto , Humanos , Degeneración Macular/genética , Mutación Missense
5.
Pediatr Nephrol ; 37(3): 601-612, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34476601

RESUMEN

BACKGROUND: C3 glomerulopathy (C3G) is a rare kidney disorder characterized by predominant glomerular depositions of complement C3. C3G can be subdivided into dense deposit disease (DDD) and C3 glomerulonephritis (C3GN). This study describes the long-term follow-up with extensive complement analysis of 29 Dutch children with C3G. METHODS: Twenty-nine C3G patients (19 DDD, 10 C3GN) diagnosed between 1992 and 2014 were included. Clinical and laboratory findings were collected at presentation and during follow-up. Specialized assays were used to detect rare variants in complement genes and measure complement-directed autoantibodies and biomarkers in blood. RESULTS: DDD patients presented with lower estimated glomerular filtration rate (eGFR). C3 nephritic factors (C3NeFs) were detected in 20 patients and remained detectable over time despite immunosuppressive treatment. At presentation, low serum C3 levels were detected in 84% of all patients. During follow-up, in about 50% of patients, all of them C3NeF-positive, C3 levels remained low. Linear mixed model analysis showed that C3GN patients had higher soluble C5b-9 (sC5b-9) and lower properdin levels compared to DDD patients. With a median follow-up of 52 months, an overall benign outcome was observed with only six patients with eGFR below 90 ml/min/1.73 m2 at last follow-up. CONCLUSIONS: We extensively described clinical and laboratory findings including complement features of an exclusively pediatric C3G cohort. Outcome was relatively benign, persistent low C3 correlated with C3NeF presence, and C3GN was associated with higher sC5b-9 and lower properdin levels. Prospective studies are needed to further elucidate the pathogenic mechanisms underlying C3G and guide personalized medicine with complement therapeutics.


Asunto(s)
Glomerulonefritis Membranoproliferativa , Glomerulonefritis , Enfermedades Renales , Niño , Complemento C3 , Factor Nefrítico del Complemento 3 , Vía Alternativa del Complemento , Femenino , Estudios de Seguimiento , Glomerulonefritis Membranoproliferativa/patología , Humanos , Masculino , Properdina
6.
J Immunol ; 207(10): 2465-2472, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34635587

RESUMEN

The complement system is an important part of innate immunity. Complement activation leads to formation of convertase enzymes, switch of their specificity from C3 to C5 cleavage, and generation of lytic membrane attack complexes (C5b-9) on surfaces of pathogens. Most C5 cleavage occurs via the complement alternative pathway (AP). The regulator properdin promotes generation and stabilization of AP convertases. However, its role in C5 activation is not yet understood. In this work, we showed that serum properdin is essential for LPS- and zymosan-induced C5b-9 generation and C5b-9-mediated lysis of rabbit erythrocytes. Furthermore, we demonstrated its essential role in C5 cleavage by AP convertases. To this end, we developed a hemolytic assay in which AP convertases were generated on rabbit erythrocytes by using properdin-depleted serum in the presence of C5 inhibitor (step 1), followed by washing and addition of purified C5-C9 components to allow C5b-9 formation (step 2). In this assay, addition of purified properdin to properdin-depleted serum during convertase formation (step 1) was required to restore C5 cleavage and C5b-9-mediated hemolysis. Importantly, C5 convertase activity was also fully restored when properdin was added together with C5b-9 components (step 2), thus after convertase formation. Moreover, with C3-depleted serum, not capable of forming new convertases but containing properdin, in step 2 of the assay, again full C5b-9 formation was observed and blocked by addition of properdin inhibitor Salp20. Thus, properdin is essential for the convertase specificity switch toward C5, and this function is independent of properdin's role in new convertase formation.


Asunto(s)
Activación de Complemento/fisiología , Convertasas de Complemento C3-C5/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Vía Alternativa del Complemento/fisiología , Properdina/metabolismo , Animales , Conejos
7.
Front Immunol ; 12: 715704, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456924

RESUMEN

The rare and heterogeneous kidney disorder C3 glomerulopathy (C3G) is characterized by dysregulation of the alternative pathway (AP) of the complement system. C3G is often associated with autoantibodies stabilizing the AP C3 convertase named C3 nephritic factors (C3NeF). The role of classical pathway (CP) convertase stabilization in C3G and related diseases such as immune complex-mediated membranoproliferative glomerulonephritis (IC-MPGN) remains largely unknown. Here, we investigated the CP convertase activity in patients with C3G and IC-MPGN. Using a refined two-step hemolytic assay, we measured the stability of CP convertases directly in the serum of 52 patients and 17 healthy controls. In four patients, CP convertase activity was prolonged compared to healthy controls, i.e. the enzymatic complex was stabilized. In three patients (2 C3G, 1 IC-MPGN) the convertase stabilization was caused by immunoglobulins, indicating the presence of autoantibodies named C4 nephritic factors (C4NeFs). Importantly, the assay also enabled detection of non-immunoglobulin-mediated stabilization of the CP convertase in one patient with C3G. Prolonged CP convertase activity coincided with C3NeF activity in all patients and for up to 70 months of observation. Crucially, experiments with C3-depleted serum showed that C4NeFs stabilized the CP C3 convertase (C4bC2a), that does not contain C3NeF epitopes. All patients with prolonged CP convertase activity showed clear signs of complement activation, i.e. lowered C3 and C5 levels and elevated levels of C3d, C3bc, C3bBbP, and C5b-9. In conclusion, this work provides new insights into the diverse aspects and (non-)immunoglobulin nature of factors causing CP convertase overactivity in C3G/IC-MPGN.


Asunto(s)
Complejo Antígeno-Anticuerpo/inmunología , Complemento C3/inmunología , Vía Clásica del Complemento/inmunología , Glomerulonefritis Membranoproliferativa/etiología , Glomerulonefritis Membranoproliferativa/metabolismo , Adolescente , Animales , Autoanticuerpos/inmunología , Biomarcadores , Niño , Activación de Complemento , Complemento C3/metabolismo , C3 Convertasa de la Vía Alternativa del Complemento/inmunología , Factor Nefrítico del Complemento 3/inmunología , Proteínas del Sistema Complemento/inmunología , Susceptibilidad a Enfermedades , Activación Enzimática , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Glomerulonefritis Membranoproliferativa/diagnóstico , Humanos , Masculino
8.
Methods Mol Biol ; 2227: 83-96, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33847933

RESUMEN

The complement system is a key part of innate immunity. However, if the system becomes dysregulated, damage to healthy host cells can occur, especially to the glomerular cells of the kidney. The convertases of the alternative pathway of the complement system play a crucial role in complement activation. In healthy conditions, their activity is strictly regulated. In patients with diseases caused by complement alternative pathway dysregulation, such as C3 glomerulopathy and atypical hemolytic uremic syndrome, factors can be present in the blood that disturb this delicate balance, leading to convertase overactivity. Such factors include C3 nephritic factors, which are autoantibodies against the C3 convertase that prolong its activity, or genetic variants resulting in a stabilized convertase complex. This chapter describes a method in which the activity and stability of the alternative pathway convertases can be measured to detect aberrant serum factors causing convertase overactivity.


Asunto(s)
Convertasas de Complemento C3-C5/metabolismo , Ensayo de Actividad Hemolítica de Complemento/métodos , Vía Alternativa del Complemento , Animales , Síndrome Hemolítico Urémico Atípico/sangre , Síndrome Hemolítico Urémico Atípico/diagnóstico , Síndrome Hemolítico Urémico Atípico/inmunología , Activación de Complemento , Complemento C3/inmunología , Factor Nefrítico del Complemento 3/análisis , Factor Nefrítico del Complemento 3/inmunología , Convertasas de Complemento C3-C5/análisis , Vía Alternativa del Complemento/inmunología , Glomerulonefritis/sangre , Glomerulonefritis/diagnóstico , Glomerulonefritis/inmunología , Cobayas , Humanos , Conejos
10.
Prog Retin Eye Res ; 84: 100952, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33610747

RESUMEN

Age-related macular degeneration (AMD) is the main cause of vision loss among the elderly in the Western world. While AMD is a multifactorial disease, the complement system was identified as one of the main pathways contributing to disease risk. The strong link between the complement system and AMD was demonstrated by genetic associations, and by elevated complement activation in local eye tissue and in the systemic circulation of AMD patients. Several complement inhibitors have been and are being explored in clinical trials, but thus far with limited success, leaving the majority of AMD patients without treatment options to date. This indicates that there is still a gap of knowledge regarding the functional implications of the complement system in AMD pathogenesis and how to bring these towards clinical translation. Many different experimental set-ups and disease models have been used to study complement activation in vivo and in vitro, and recently emerging patient-derived induced pluripotent stem cells and genome-editing techniques open new opportunities to study AMD disease mechanisms and test new therapeutic strategies in the future. In this review we provide an extensive overview of methods employed to understand the molecular processes of complement activation in AMD pathogenesis. We discuss the findings, advantages and challenges of each approach and conclude with an outlook on how recent, exciting developments can fill in current knowledge gaps and can aid in the development of effective complement-targeting therapeutic strategies in AMD.


Asunto(s)
Degeneración Macular , Anciano , Activación de Complemento , Proteínas del Sistema Complemento/genética , Variación Genética , Humanos , Degeneración Macular/genética
11.
Front Immunol ; 12: 789897, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069568

RESUMEN

Complement factor I (FI) is a central inhibitor of the complement system, and impaired FI function increases complement activation, contributing to diseases such as age-related macular degeneration (AMD) and atypical hemolytic uremic syndrome (aHUS). Genetic variation in complement factor I (CFI) has been identified in both AMD and aHUS, with more than half of these variants leading to reduced FI secretion levels. For many of the variants with normal FI secretion, however, functional implications are not yet known. Here we studied 11 rare missense variants, with FI secretion levels comparable to wildtype, but a predicted damaging effects based on the Combined Annotation Dependent Depletion (CADD) score. Three variants (p.Pro50Ala, p.Arg339Gln, and p.Ser570Thr) were analyzed in plasma and serum samples of carriers affected by AMD. All 11 variants (nine for the first time in this study) were recombinantly expressed and the ability to degrade C3b was studied with the C3b degradation assay. The amount of degradation was determined by measuring the degradation product iC3b with ELISA. Eight of 11 (73%) mutant proteins (p.Pro50Ala, p.Arg339Gln, p.Ile340Thr, p.Gly342Glu, p.Gly349Arg, p.Arg474Gln, p.Gly487Cys, and p.Gly512Ser) showed significantly impaired C3b degradation, and were therefore classified as likely pathogenic. Our data indicate that genetic variants in CFI with a CADD score >20 are likely to affect FI function, and that monitoring iC3b in a degradation assay is a useful tool to establish the pathogenicity of CFI variants in functional studies.


Asunto(s)
Síndrome Hemolítico Urémico Atípico , Factor I de Complemento , Degeneración Macular , Mutación Missense , Sustitución de Aminoácidos , Síndrome Hemolítico Urémico Atípico/sangre , Síndrome Hemolítico Urémico Atípico/genética , Síndrome Hemolítico Urémico Atípico/inmunología , Complemento C3b/inmunología , Complemento C3b/metabolismo , Factor I de Complemento/genética , Factor I de Complemento/inmunología , Factor I de Complemento/metabolismo , Femenino , Humanos , Degeneración Macular/sangre , Degeneración Macular/genética , Degeneración Macular/inmunología , Masculino
12.
Br J Clin Pharmacol ; 87(4): 2128-2131, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32986871

RESUMEN

Eculizumab is known to cross the placenta to a limited degree, but recently therapeutic drug levels in cord blood were found in a single case. We report maternal, cord and placental levels of unbound eculizumab, C5 and C5-eculizumab in two pregnancies of a paroxysmal nocturnal haemoglobinuria patient who received 900 mg eculizumab every 2 weeks. In both pregnancies, cord blood concentrations of unbound eculizumab were below 4 µg/mL, while C5-eculizumab levels were 22 and 26 µg/mL, suggesting that a considerable fraction of C5 was blocked in the newborn. Concentrations in each placenta of unbound eculizumab were 41 ± 3 and 45 ± 4 µg/g tissue, of C5-eculizumab 19 ± 2 and 32 ± 3 µg/g, and of C5 20 ± 3 and 30 ± 2 µg/g (mean ± SD, in three tissue samples per placenta). Placental levels of unbound eculizumab were higher than those of C5-eculizumab complexes, while maternal concentrations were approximately equal, suggesting selective transport of unbound eculizumab across the placenta.


Asunto(s)
Hemoglobinuria Paroxística , Anticuerpos Monoclonales Humanizados , Femenino , Hemoglobinuria Paroxística/tratamiento farmacológico , Humanos , Recién Nacido , Placenta , Embarazo
13.
Clin Transl Immunology ; 9(12): e1225, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33318796

RESUMEN

OBJECTIVES: Complement deficiencies are difficult to diagnose because of the variability of symptoms and the complexity of the diagnostic process. Here, we applied a novel 'complementomics' approach to study the impact of various complement deficiencies on circulating complement levels. METHODS: Using a quantitative multiplex mass spectrometry assay, we analysed 44 peptides to profile 34 complement proteins simultaneously in 40 healthy controls and 83 individuals with a diagnosed deficiency or a potential pathogenic variant in 14 different complement proteins. RESULTS: Apart from confirming near or total absence of the respective protein in plasma of complement-deficient patients, this mass spectrometry-based profiling method led to the identification of additional deficiencies. In many cases, partial depletion of the pathway up- and/or downstream of the absent protein was measured. This was especially found in patients deficient for complement inhibitors, such as angioedema patients with a C1-inhibitor deficiency. The added value of complementomics was shown in three patients with poorly defined complement deficiencies. CONCLUSION: Our study shows the potential clinical utility of profiling circulating complement proteins as a comprehensive read-out of various complement deficiencies. Particularly, our approach provides insight into the intricate interplay between complement proteins due to functional coupling, which contributes to the better understanding of the various disease phenotypes and improvement of care for patients with complement-mediated diseases.

14.
Toxins (Basel) ; 12(7)2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32635212

RESUMEN

Hemolytic uremic syndrome (HUS) is a severe renal disease that is often preceded by infection with Shiga toxin (Stx)-producing Escherichia coli (STEC). The exact mechanism of Stx-mediated inflammation on human glomerular microvascular endothelial cells (HGMVECs) during HUS is still not well understood. In this study, we investigated the effect of Stx1 on the gene expression of proteins involved in leucocyte-mediated and complement-mediated inflammation. Our results showed that Stx1 enhances the mRNA and protein expression of heparan sulfate proteoglycan (HSPG) syndecan-4 in HGMVECs pre-stimulated with tumor necrosis factor α (TNFα). CD44 was upregulated on mRNA but not on protein level; no effect on the mRNA expression of other tested HSPGs glypican-1 and betaglycan was observed. Furthermore, Stx1 upregulated the mRNA, cell surface expression, and supernatant levels of the intercellular adhesion molecule-1 (ICAM-1) in HGMVECs. Interestingly, no effect on the protein levels of alternative pathway (AP) components was observed, although C3 mRNA was upregulated. All observed effects were much stronger in HGMVECs than in human umbilical endothelial cells (HUVECs), a common model cell type used in endothelial studies. Our results provide new insights into the role of Stx1 in the pathogenesis of HUS. Possibilities to target the overexpression of syndecan-4 and ICAM-1 for STEC-HUS therapy should be investigated in future studies.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Síndrome Hemolítico-Urémico/etiología , Molécula 1 de Adhesión Intercelular/metabolismo , Glomérulos Renales/irrigación sanguínea , Microvasos/efectos de los fármacos , Toxina Shiga I/toxicidad , Sindecano-4/metabolismo , Células Cultivadas , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Células Endoteliales/metabolismo , Síndrome Hemolítico-Urémico/genética , Síndrome Hemolítico-Urémico/metabolismo , Proteoglicanos de Heparán Sulfato/genética , Proteoglicanos de Heparán Sulfato/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/genética , Microvasos/metabolismo , Sindecano-4/genética , Regulación hacia Arriba
15.
Hum Mol Genet ; 29(14): 2313-2324, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32510551

RESUMEN

Factor I (FI) is one of the main inhibitors of complement activity, and numerous rare coding variants have been reported in patients with age-related macular degeneration, atypical hemolytic uremic syndrome and C3 glomerulopathy. Since many of these variants are of unknown clinical significance, this study aimed to determine the effect of rare coding variants in the complement factor I (CFI) gene on FI expression. We measured FI levels in plasma samples of carriers of rare coding variants and in vitro in the supernatants of epithelial cells expressing recombinant FI. FI levels were measured in 177 plasma samples of 155 individuals, carrying 24 different rare coding variants in CFI. In carriers of the variants p.Gly119Arg, p.Leu131Arg, p.Gly188Ala and c.772G>A (r.685_773del), significantly reduced FI plasma levels were detected. Furthermore, recombinant FI expression levels were determined for 126 rare coding variants. Of these variants 68 (54%) resulted in significantly reduced FI expression in supernatant compared to wildtype (WT). The recombinant protein expression levels correlated significantly with the FI level in plasma of carriers of CFI variants. In this study, we performed the most comprehensive FI expression level analysis of rare coding variants in CFI to date. More than half of CFI variants lead to reduced FI expression, which might impair complement regulation in vivo. Our study will aid the interpretation of rare coding CFI variants identified in clinical practice, which is in particular important in light of patient inclusion in ongoing clinical trials for CFI gene supplementation in AMD.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/genética , Factor I de Complemento/genética , Fibrinógeno/genética , Degeneración Macular/genética , Anciano , Anciano de 80 o más Años , Alelos , Síndrome Hemolítico Urémico Atípico/sangre , Síndrome Hemolítico Urémico Atípico/patología , Femenino , Regulación de la Expresión Génica/genética , Predisposición Genética a la Enfermedad , Genotipo , Heterocigoto , Humanos , Degeneración Macular/sangre , Degeneración Macular/patología , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética
18.
Front Immunol ; 11: 612706, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519821

RESUMEN

Background: With the introduction of eculizumab, a C5-inhibitor, morbidity and mortality improved significantly for patients with atypical hemolytic uremic syndrome (aHUS). In view of the high costs, actual needs of the drug, and increasing evidence in literature, aHUS patients can be treated according to a restrictive eculizumab regimen. We retrospectively analyzed the pharmacokinetic and dynamic parameters of eculizumab in one patient in time, emphasizing various factors which could be taken into account during tapering of treatment. Case Presentation: A nowadays 18-year-old male with a severe, frequently relapsing form of atypical HUS due to a hybrid CFH/CFHR1 gene in combination with the homozygous factor H haplotype, required chronic plasma therapy (PT), including periods with plasma infusion, from the age of onset at 5 months until initiation of eculizumab at the age of 11 years. A mild but stable chronic kidney disease (CKD) and 9 years of disease remission enabled prolongation of eculizumab interval. At the age of 15 years, a sudden yet multifactorial progression of chronic kidney disease (CKD) was observed, without any signs of disease recurrence. However, an acquired glomerulocystic disease, a reduced left kidney function, and abnormal abdominal venous system of unknown etiology were found. In addition, after an aHUS relapse, an unexpected increase in intra-patient variability of eculizumab concentrations was seen. Retrospective pharmacokinetic analysis revealed a change in eculizumab clearance, associated with a simultaneous increase in proteinuria. Conclusion: High intra-patient variability of eculizumab pharmacokinetics were observed over time, emphasizing the necessity for adequate and continuous therapeutic drug monitoring in aHUS patients. Eculizumab serum trough levels together with complement activation markers (CH50) should be frequently assessed, especially during tapering of drug therapy and/or changing clinical conditions in the patient. In addition, an increase in proteinuria could result in urinary eculizumab loss, indicating that urinary monitoring of eculizumab may be important in aHUS patients with an unexplained decline in serum concentrations.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacocinética , Anticuerpos Monoclonales Humanizados/uso terapéutico , Síndrome Hemolítico Urémico Atípico/tratamiento farmacológico , Adolescente , Síndrome Hemolítico Urémico Atípico/metabolismo , Factor H de Complemento/metabolismo , Humanos , Masculino , Estudios Retrospectivos
19.
Front Immunol ; 11: 547406, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33414780

RESUMEN

Shiga-toxin (Stx)-producing Escherichia coli hemolytic-uremic syndrome (STEC-HUS) is one of the most common causes of acute kidney injury in children. Stx-mediated endothelial injury initiates the cascade leading to thrombotic microangiopathy (TMA), still the exact pathogenesis remains elusive. Interestingly, there is wide variability in clinical presentation and outcome. One explanation for this could be the enhancement of TMA through other factors. We hypothesize that heme, as released during extensive hemolysis, contributes to the etiology of TMA. Plasma levels of heme and its scavenger hemopexin and degrading enzyme heme-oxygenase-1 (HO-1) were measured in 48 STEC-HUS patients. Subsequently, the effect of these disease-specific heme concentrations, in combination with Stx, was assessed on primary human glomerular microvascular endothelial cells (HGMVECs). Significantly elevated plasma heme levels up to 21.2 µM were found in STEC-HUS patients compared to controls and were inversely correlated with low or depleted plasma hemopexin levels (R2 -0.74). Plasma levels of HO-1 are significantly elevated compared to controls. Interestingly, especially patients with high heme levels (n = 12, heme levels above 75 quartile range) had high plasma HO-1 levels with median of 332.5 (86-720) ng/ml (p = 0.008). Furthermore, heme is internalized leading to a significant increase in reactive oxygen species production and stimulated both nuclear translocation of NF-κB and increased levels of its target gene (tissue factor). In conclusion, we are the first to show elevated heme levels in patients with STEC-HUS. These increased heme levels mediate endothelial injury by promoting oxidative stress and a pro-inflammatory and pro-thrombotic state. Hence, heme may be a contributing and driving factor in the pathogenesis of STEC-HUS and could potentially amplify the cascade leading to TMA.


Asunto(s)
Susceptibilidad a Enfermedades , Hemo/metabolismo , Síndrome Hemolítico-Urémico/etiología , Síndrome Hemolítico-Urémico/metabolismo , Escherichia coli Shiga-Toxigénica/fisiología , Apoptosis , Biomarcadores , Niño , Preescolar , Células Endoteliales/metabolismo , Femenino , Hemo-Oxigenasa 1/metabolismo , Síndrome Hemolítico-Urémico/diagnóstico , Síndrome Hemolítico-Urémico/terapia , Humanos , Lactante , Masculino , Oxidación-Reducción , Fenotipo , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Tromboplastina/metabolismo
20.
EBioMedicine ; 45: 303-313, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31262714

RESUMEN

BACKGROUND: The complement system is a central component of the innate immune system. Constitutive biosynthesis of complement proteins is essential for homeostasis. Dysregulation as a consequence of genetic or environmental cues can lead to inflammatory syndromes or increased susceptibility to infection. However, very little is known about steady state levels in children or its kinetics during infection. METHODS: With a newly developed multiplex mass spectrometry-based method we analyzed the levels of 32 complement proteins in healthy individuals and in a group of pediatric patients infected with bacterial or viral pathogens. FINDINGS: In plasma from young infants we found reduced levels of C4BP, ficolin-3, factor B, classical pathway components C1QA, C1QB, C1QC, C1R, and terminal pathway components C5, C8, C9, as compared to healthy adults; whereas the majority of complement regulating (inhibitory) proteins reach adult levels at very young age. Both viral and bacterial infections in children generally lead to a slight overall increase in complement levels, with some exceptions. The kinetics of complement levels during invasive bacterial infections only showed minor changes, except for a significant increase and decrease of CRP and clusterin, respectively. INTERPRETATION: The combination of lower levels of activating and higher levels of regulating complement proteins, would potentially raise the threshold of activation, which might lead to suppressed complement activation in the first phase of life. There is hardly any measurable complement consumption during bacterial or viral infection. Altogether, expression of the complement proteins appears surprisingly stable, which suggests that the system is continuously replenished. FUND: European Union's Horizon 2020, project PERFORM, grant agreement No. 668303.


Asunto(s)
Enfermedades Transmisibles/inmunología , Activación de Complemento/inmunología , Proteínas del Sistema Complemento/química , Inflamación/inmunología , Adolescente , Adulto , Proteína C-Reactiva/genética , Proteína C-Reactiva/inmunología , Niño , Preescolar , Clusterina/genética , Clusterina/inmunología , Enfermedades Transmisibles/genética , Activación de Complemento/genética , Proteínas del Sistema Complemento/clasificación , Proteínas del Sistema Complemento/aislamiento & purificación , Femenino , Homeostasis , Humanos , Lactante , Recién Nacido , Inflamación/genética , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...